Rajanen, M. (2011) Applying Usability Cost-Benefit Analysis - Explorations in Commercial
and Open Source Software Development Contexts. PhD Dissertation. Acta Universitatis
Ouluensis Series A 587. University of Oulu. http://jultika.oulu.fi/files/isbn9789514296871.pdf
http://urn.fi/lurn:isbn:9789514296871

Applying usability cost—benefit analysis — explorations in
commercial and open source software development
contexts

Mikko Rajanen

Mikko Rajanen

mikko.rajanen@oulu.fi

PhD thesis for PhD degree in Information Processing Science in University of Oulu
Department of Information Processing Science

University of Oulu

PO Box 3000

FIN-90014 University of Oulu

Abbreviations

HF Human Factors

IS Information System

IT Information Technology
0SS Open Source Software
SwW Software

UCD User-Centered Design
UE Usability Engineering

Ul User Interface

List of original publications

This thesis is based on the following publications, which are referred to in the text by
their Roman numerals.

I

IT

III

v

Rajanen M & Jokela T (2004) Analysis of Usability Cost-Benefit Models.
Proceedings of the 12th European Conference on Information Systems (ECIS2004),
Turku, Finland. ISBN: 951-564-192-6.

Rajanen M (2006) Different Approaches to Usability Cost-Benefit Analysis.
Proceedings of 13th European Conference on Information Technology Evaluation
(ECITE 2006), Genoa, Italy. ISBN: 978-1-905305-32-2 (book) / 978-1-905305-34-6
(cd)

Rajanen M & livari N (2007) Usability Cost-Benefit Analysis: How Usability
Became a Curse Word?. Proceedings of the INTERACT 2007. Rio de Janeiro, Brasil.
ISSN: 0302-9743, LNCS: 4663, ISBN: 978-3-540-74799-4, DOI: 10.1007/978-3-
540-74800-7_47

Rajanen M, livari N & Anttila K (2011) Introducing Usability Activities into Open
Source Software Development Projects — Searching for a Suitable Approach.
Accepted to Journal of Information Technology Theory and Application 2011.
Rajanen M & livari N (2010) Traditional Usability Costs and Benefits - Fitting them
into Open Source Software Development. Proceedings of 18th European Conference
on Information Systems (ECIS 2010).

Contents

Abbreviations 2
List of original publications 3
Contents 4
1 Introduction 6
1.1 Background and motivationccuuieeiiiiieeeiiiieeeiieeeeeeieeeeeiieeenees 6
1.2 Research qUESHIONS........oeiiiiiiieiiiiiieeiiiie e e et e et e e et e e eeeaaeeeeaees 9
1.3 a8 ettt et 10
1.3.1 Commercial development cOnteXt...........ceeerevveneererinneeriiennennnnn. 10
1.3.2 OSS development CONLEXEueerirunereiiieeeeiieereiieeereiieeeeenes 11
1.4 Structure of the thesis........ccoiiiiiiiiiiiiii e 12
2 Related work 13
2.1 Usability and usability cost-benefit analysis............cccceeevviiieeiiiinnnnnnn. 13
2. 1.1 US@DIIILY coeviiieieiie e 13
2.1.2 Cost-benefit analysis............ueeeiiiiiieeiiiiiieeeiiiie e e eeeaeanns 13
2.1.3 User-centered deSiNcuuueeieiiiieeriiiineeriiiieeeeiineeeeanneeeenennns 15
2.2 OSS devVelOPMENL.......ueiiiiieeeiiieeeeiiieeeeiieeeeeiieeeeereeeeeeaneeeeaeneeeaees 16
2.2.1 Historical and cultural background of OSS...........c..cevvvieernnnnn.. 16
2.2.2 0SS development COMMUNILYuuereivnneeriiineeeriiieeeriiieeeneennss 17
2.2.3 OSS develOPers @S USETS.......uuneierruneerriinneereiineeerrreneeersnnneesesnnnns 17
2.2.4 OSS developers as Managers.........ceeevuveneerereneeerrreneeerernneeeesennss 18
3 Research approach and methods 19
3.1 Research approachesoeeiiiiiieiiiiiiieeiiiie e e e 19
3.2 Data gathering and analySiS...........cceeivuvieeiiiiineriiiiieeeeiiireeeeieeeeraiins 20
4 Results: Analyzing the usability benefits 22
4.1 Analyzing the usability cost-benefit analysis models (ECIS 2004) 22
4.1.1 Ehrlichand RON.........ooooiiiiiiiii e 23
41,2 BOVAN..eiiiiiiiiiei e 23
413 KaArat cooeeiiii e 24
4.1.4 Mayhew and Mantei............ceeeieiiieeriiineeriiiieeeeiieeeeeaineeeenennns 24
4.1.5 Benefits in the development phase............ccveeeiiiiieeeiiiineeennnnn.. 24
4.1.6 Benefits in the sales phase............ccovevviiiieiiiiiieeeiiiiee e 25
4.1.7 Benefits in the introduction phase..............ccceeeiiiiiieeiiiineeennnnn. 26
4.1.8 Benefits in daily USEceeevveeiiiiiiieeiiiiii e e e e 27
1.9 COSES ctnet ettt 28
4.1.10 Summary of findingscoeeiiiiiieiiiiiiieeiiiee e 28
4.2 Categorizing the usability cost-benefit analysis models (ECITE 2006) . 29
4.2.1 The approach of usability cost-benefit analysis......................... 30
4.2.2 The empirical background............c..cooviiiiiiiiiniiiiiiieeeee e, 30
4.2.3 TNEETESt GTOUPS. .uuetuneeiineeiieetieetieeetieetiee et eetieetaeetaneeaaeesnnnas 31
4.2.4 Summary of findingsccoeeiiiiiieiiiiiiieiiiee e 32
5 Results: Usability cost-benefit considerations in commercial and OSS
development contexts 33
5.1 Usability cost-benefit considerations in the commercial development context
(INEEract 2007) .uueiiiieeeeiiie et e et e e et e e e e e e eeaneeeeae e eearaneeeesnnnns 33
5.1.1 Analytical frameworkc..cooviieiiiiiiniiiiiiieeiee e, 33

5.1.2 Summary of findingsc.ooeeiiiiiieiiiiiieeeeee e 34

5.2 UKKOSS cases (JITTA2011) .ccooiiiiiiiiiiiiiiiiiiiii 36

5.2.1 Partnership with the OSS community...........ccceeevvveeeeiirenneennnnn.. 37
5.2.2 Management commitment in the OSS development context....... 38
5.2.3 Summary of findingscoeeiiiiiieiiiiiieiieee e 40
5.3 Fitting usability cost-benefit consideration into the OSS context (ECIS 2010)40
5.3.1 Implications of the OSS for usability benefits...............c..cco...... 41
5.3.2 Implications of the OSS for existing usability costs................... 42

5.3.3 Usability benefits in the open source software development context 43
5.3.4 Usability costs in open source software development context..... 44

5.3.5 Summary of findingsooeeiiiiiieiiiiiieiiee e 45

6 Discussion and conclusions 47
6.1 Answers to the research qUESHIONScceevviiiiiiiieeriiiineeeiieeeeeiis 47
6.2 Theoretical CONTIIDULIONSueiiiiiieiiiiieeiiiee e e et e e e e eei e e eeien s 48
6.3 Practical CONtIIDULIONSccvvveniiiiieeiiiiie e e ee e e e et e e e e eaae s 49
6.4 Limitations and future Work.............ccoeieiiiiiiniiiiiiie e 50
References S3

List of original publications 57

1 Introduction

This chapter establishes the background and motivation of this research, identifies the
research questions, gives an overview of the research process and limitations of the
research, introduces the cases, defines the scope of the thesis, and gives an overview of
the structure of the thesis.

1.1 Background and motivation

“When simple things need labels or instructions, the design has failed” (Norman
2002).

Today, we use software more than ever before, and it plays a crucial role in our everyday
and working life. Therefore, it is more important than ever to ask why the software that
we use in our daily lives is usually so difficult to use. Why do we have to struggle with
incomprehensible user interfaces, and why do we seem to spend more time fighting
against the software than using it for something productive? When two users of the same
software meet, sooner or later they start sharing their personal horror stories about how
the poor user interface made their lives miserable and their work unproductive. Too often,
the software or information system is difficult to learn, frustrating to use, its logic of
operations follows neither rhyme nor reason, and it does not fulfill the needs of the end
user or the organization using it. Poor usability, and hence a stressful work situation, is
still a severe problem in computer-supported work, despite efforts to solve these issues
(Cajander et al. 2006).

Fortunately, there has been a great deal of progress in regard to making usability
improvement activities an integral part of the software development process, and now
software development companies usually acknowledge the importance of usability.
However, too often the usability improvement activities are the first to be sacrificed
whenever there is a need to put the product on the market as soon as possible. Sometimes
usability improvement activities are seen as just an additional and maybe even an
optional task in software development projects, and in the eyes of the management, such
an ‘extra’ task is always a potential risk for project deadlines. Sometimes poor usability is
defended by the argument that the users can be trained and that sooner or later, these
users will learn to overcome the usability problems in the system and adapt their work
flow to the intricacies of the software. However, it is also possible that the users simply
refuse to learn to use the system with poor usability, and that the functionality that has
been implemented in the system with so much cost and effort is never used (Zetie 1995).
All the innovative and creative technical solutions are in vain if the users cannot easily
access them.

Bringing usability activities into the commercial development life cycle has been a
challenge since the beginning of the usability activities over fifty years ago (Ohnemus
1996). One reason for these difficulties is that the benefits of better usability are not
easily identified or assessed. Usability activities have been competing for resources
against other stakeholders in the SW development projects that do have objective and
convincing cost-benefit data available for management decision making when the
resources are allocated (Karat 1994). Justifying the costs and identifying the benefits of
the usability improvement activities have been seen as challenges for bringing usability
activities into software (SW) development projects (Bias & Mayhew 1994). Bringing

usability into commercial software development is still a challenge (cf. Ohnemus 1996,
Iivari 2006, Rajanen & livari 2007).

The open source software (OSS) development context has gained increasing interest
in Information Systems (IS) research in recent years (c.f. Fitzgerald 2006, Niederman et
al. 2006). Initially, SW development was conducted mainly as in-house development
where the users and their needs were close and well known. The increasing importance of
commercial SW development brought new challenges as users and their needs were no
longer as well known to the developers as they had been before. Also, the users were no
longer as readily available for usability testing as they had been in in-house development.
Traditional in-house development projects have a well-defined user population,
participating as a part of their work (Gulliksen 2000). Initially, SW companies paid little
attention to OSS development; however, in recent years, it has gained increasing interest
from the SW companies. It has been argued that OSS development will be highly
influential in the future software landscape (Fitzgerald 2006). Open source software
means software with a freely available source code for everyone to access, read, modify,
and compile. The fundamental idea of OSS is to enable software to evolve outside of
restricted commercial closed source software development in the SW company context
by exploiting community participation by technically oriented contributors and users (cf.
Raymond 1999, Ye & Kishida 2003). The OSS development context has been compared
to a bazaar where people come and go, sell and buy (Raymond 1999). Commercial
software development is carried out in closed settings as closed source software
development, where only few people can access the code. In commercial software
development, the end users can only see and use the binary form of the software. OSS
development also makes it possible for the end users to adapt the software to their
personal needs and to fix defects (Raymond 1999). OSS development is usually done by
technically very skilled developers for their own use, but nowadays OSS solutions have
more and more users who have no deep technical knowledge.

Estimating the overall influence of the OSS solutions is difficult because they can
usually be downloaded freely and from numerous mirror sites and peer-to-peer networks.
Some sources have estimated that the adoption of OSS resulted in savings of about $60
billion to consumers in 2008 and identifies the value of these OSS products to be about
6% of the total value of the software in the world (Standish Group 2008). SourceForge is
one of the most well-known web-based repositories and a leading resource for OSS
development and distribution. With about 2.7 million developers and over 260.000 OSS
development projects, the total number of users in all projects combined is estimated to
be more than 46 million, and there are more than two million downloads from project
repositories every day (SourceForge.net). There are over twenty other source code
repositories and resources for OSS development and distribution. The size of an OSS
development project varies from one developer coding and using the application alone to
massive OSS development projects spanning years and having hundreds of developers,
e.g., Linux and OpenOffice.org. The latest version of OpenOffice.org office application
suite has an estimated 15-20% market share. OpenOffice.org announced in 2009 that the
latest version had, within a year, recorded one hundred million downloads from their
main download site, excluding all downloads from mirror sites and peer-to-peer networks
(OpenOftice.org). The Firefox web browser has been downloaded over one billion times
and has a 23% worldwide usage share of web browsers (Mozilla.com). The Apache web
server software serves 55% of all web sites in the world and has reached the 100 million
web site milestone (Apache.org). Therefore, the OSS phenomenon is clearly highly
influential in the current software landscape (cf. Fitzgerald 2006).

In OSS development, the solutions tend to be somehow useful in any case since the
developers are motivated to develop this particular solution, software, or tool for their
own use; but usability has not traditionally been their major concern, partly because, in
any event, OSS developers can use the tool that they have been developing mainly for
themselves, and partly because OSS developers usually do not have much prior
knowledge about usability improvement theory, processes, guidelines, or methods.
However, the current OSS usability research is motivated by the fact that there is an ever-
increasing number of OSS solutions with a user population that no longer consists only
of developer-users. For example, most of the users of some of the most popular OSS
solutions, such as Firefox and Apache, are not able to adapt the software to their needs or
to fix or report defects (Giuri et al. 2004). Improving OSS usability and bringing
usability activities into OSS development have not been researched very much, but as
more non-developer users have started to use OSS, the importance of bringing usability
activities into OSS development and, therefore, improving OSS usability in general is
raised. However, the current status of usability activities in OSS projects and the usability
of OSS still tends to be quite poor (e.g., Cetin et al. 2007, Nichols & Twidale 2003,
Nichols & Twidale 2006, Zhao & Deek 2005, Zhao & Deek 2006) even though some
recent studies have also identified many usability activities that have already been used in
OSS projects (Andreasen et al. 2006, Bach & Carroll 2009, Bach et al. 2009, Terry et al.
2010). Such good progress appears, however, to be rather slow because most OSS core
developers are mainly technically oriented and there is a lack of skilled and available
usability specialists for OSS development projects. Furthermore, even if there were such
usability specialists available, the problem would be to identify and find the OSS
development projects that are in need of usability improvement activities and to gain
access to the OSS development projects and plan and conduct the usability activities in
such a way that they have an impact on the development. There are OSS development
projects in need of usability expertise and usability specialists willing to contribute to
such projects; but unless the OSS development projects realize they need to integrate
these usability improvement activities into their development roadmap, and unless the
usability specialists find these projects and find a way to convince the core developers of
the importance of usability, these two worlds will never fully meet.

Companies have also currently started to use different forms of OSS in their business
and operations. Using and utilizing OSS applications and development tools has been
common for a long time, but the utilization of the actual source code is also becoming
popular. The availability of free and ready-made components can reduce the development
costs substantially, and the OSS development projects and their communities often
provide frequent updates and support for these components. Companies have also started
to participate in OSS communities and even to launch and build new communities for
their products (Dahlander & Magnusson 2005, Fitzgerald 2006, livari et al. 2008,
Niederman et al. 2006). The revenue models of OSS have been changed from pure
support selling and loss-leading to more comprehensive marketing and sales management
and servicing and implementation (Rajala et al. 2001). Some of the recent studies (c.f.
Agerfalk & Fitzgerald 2008) also suggest that outsourcing to the OSS community
provides a significant opportunity for SW companies to headhunt top developers from the
OSS projects.

The usability cost-benefit analysis models outline the potential costs and benefits of
better usability through usability improvement activities (e.g., prototyping, usability
testing, and heuristic evaluation) and these models can be used to motivate the
management to allocate resources for these usability activities when they see that the

potential benefits outweigh the costs. Though there are some published usability cost-
benefit analysis models for the commercial SW development context, the issue of
whether these models are really helpful when applied in commercial or OSS development
contexts has not yet been studied.

1.2 Research questions

The overall research aim of this thesis is to identify and explore if usability cost-benefit
analysis is helpful when applied in commercial and open source software development
contexts. This broad topic is approached through three research questions:

RQ1: What are the differences and commonalities of the existing usability cost-benefit
analysis models?

RQ2: How do the existing usability cost-benefit considerations fit into practice in the
commercial development context?

RQ3: How do usability costs and benefits fit into the open source sofiware development
context?

These research questions must be examined in numerical order. First, the existing
usability cost-benefit analysis models need to be evaluated in order to map out the
identified usability costs and benefits from the literature; their underlying assumptions
for the usability cost-benefit analysis; and their inherent strengths, weaknesses,
differences, and commonalities. Second, these identified usability costs and benefits need
to be evaluated regarding how well they fit into practice. Third, the fit of usability costs
and benefits into the open source software development context needs to be evaluated
and the usability costs and benefits modified to fit the OSS development context.

RQ1: The existing usability cost-benefit analysis literature and research focus on
certain areas and have specific viewpoints or different characteristics (c.f. Rajanen 2003,
Rajanen & Jokela 2004, Rajanen 2006, Rajanen 2007, Rajanen & Ilivari 2007). It is
important to take a closer look at the existing usability cost-benefit analysis literature to
find out the characteristics and scope of the identified usability costs and benefits. The
aim of the first research question is to examine the characteristics of the existing usability
cost-benefit analysis literature, the extent to which the existing research identifies
usability costs and benefits, and the possibilities of building better universal usability
cost-benefit analysis models in general and for the OSS development context in
particular. This research question is relevant to the usability cost-benefit analysis research
community. Paper I explores the different aspects of usability cost-benefit analysis
models and the extent of concrete guidance provided in each model for the cost-benefit
analysis. Paper II explores the approach of usability cost-benefit analysis models, the
identified empirical background for models, and the identified interest groups.

RQ2: The aim of the second research question is to examine how well the existing
usability cost-benefit analysis literature fits into practice in closed source software
development and OSS development contexts. It has been argued that usability cost-
benefit arguments can be used to promote bringing usability activities into the
development process (c.f. Bias & Mayhew 1994). This research question is relevant for
researchers doing usability cost-benefit analysis research and practitioners utilizing
usability cost-benefit considerations in the company development context. Paper III
explores using usability cost-benefit considerations in a case organization in the company
development context.

RQ3: It can be argued that the existing usability cost-benefit literature cannot be
applied directly in the open source software development context (c.f. Rajanen & livari
2010). Therefore, we have to first identify the parallels and differences between open
source software development and closed source software development in order to
identify the extent to which the existing usability costs and benefits can be directly
applied to the OSS development context, and if and how the rest of the usability costs
and benefits can be modified to fit them into the OSS development context. It is difficult
to introduce usability activities into OSS development because there are no established
usability practices or culture, and core developers are not familiar with usability as a
concept and often do not see any need for it (c.f. Rajanen, livari & Anttila 2011). It has
been argued that usability cost-benefit arguments can be used by management to promote
bringing usability activities into the development process (c.f. Bias & Mayhew 1994,
Bias & Mayhew 2005). The OSS development context-specific usability costs and
benefits are reflected in the experiences of bringing usability into the OSS development
context (c.f. Rajanen, livari & Anttila 2011). This research question is relevant for
usability researchers, OSS researchers, usability cost-benefit analysis researchers, and
usability advocates in the OSS development context. Paper IV explores bringing usability
into the OSS development context. Paper V explores the implications of OSS for
usability cost-benefit considerations and introduces a specific prototype usability cost-
benefit analysis model that could be helpful in the OSS development context.

1.3 Cases

Different development contexts have been identified. Grudin (1991) identifies three
different development contexts: the in-house, tailored, and product development contexts.
In the in-house development context, the SW is developed for use within the
development company itself. In the tailored or contract development context, the SW is
developed for a particular customer organization and the SW is tailored to fit the needs
and demands of the customer. In the product or commercial development context, the SW
is developed for any potential customer with no particular tailoring.

1.3.1 Commercial development context

This thesis presents one case of using usability cost-benefit arguments in the company
development context. The company case organization was a small to medium-sized SW
development company with not much prior knowledge about usability or user-centered
design (UCD), with a typical organizational hierarchical structure, and developing large-
scale business-to-business information systems and SW-intensive products targeting
international markets. The company operated in the tailored development context. The
SW was developed for a particular customer and tailored to fit the specific needs and
demands of that specific customer in a unique context of use. Initially, the management at
the company and project level was very committed to the usability improvement efforts.
The company was chosen as a case organization because it had a limited background in
usability work and there was open access to top and project management to introduce
usability cost-benefit considerations. Access to this case project was gained through a
research project that aimed to introduce usability activities into commercial SW
development organizations. The case organization participated in the research project for
two years. The usability improvement effort was initiated by evaluating the current state
of the usability activities in the organization. These usability improvement efforts

10

included experimenting with many different kinds of usability activities, such as paper
prototyping, usability testing, Ul style guide development, and customer visits. Usability
cost-benefit considerations were introduced to top- and project-level management as
arguments for these usability improvement efforts.

1.3.2 OSS development context

This thesis presents six cases of bringing usability activities into open source software
(OSS) development projects. The OSS case projects involved in this thesis were OSS
development projects with different sizes, levels of organization, and development aims.
These cases were studied to identify possible areas of wusability cost-benefit
considerations in the open source software development context, to identify the
similarities and differences between closed source software development and these open
source software development projects, and to pilot test the identified usability cost-
benefit arguments for open source software development. These OSS development
projects were developing software for non-technical end-users. Some projects developed
software for very large and wide end-user target populations, while other projects had
very small but highly specialized and skilled target end users.

The OSS development projects had a long development history, and projects had
enough core developers and active community members to ensure that the projects
remained active during the studies. Also, this made the research setting more authentic
since new contributors join an OSS development project when the project has already
progressed beyond the initial design phase and the first versions of the software have
already been released. Most of the projects were small enough to identify the core
developers and to communicate directly with them; but not too small. The projects had
great differences in their hierarchical structure, decision-making process, means of
communication, and development rigor. The case projects were deliberately chosen to not
include any projects with some type of official SW company participation or
endorsement. This exclusion was made because companies may have usability resources
and may prefer to utilize them in the development if they participated in or endorse the
development (e.g., Benson ez al. 2004, Frishberg et al. 2002, livari et al. 2008, Nichols &
Twidale 2006). Also, any OSS project that has been started by an SW company or is
closely monitored and guided by an SW company may not be very different from a
closed source software development project within the company from the usability
activities point of view; therefore, while it might offer an interesting area for further
research, it was excluded.

Access to these six case OSS development projects was gained through six student
teams that aimed to introduce usability activities into their selected OSS development
project under close supervision of the author. The students in these usability teams had a
usability background from at least two previous usability courses about usability
evaluation methods (e.g., heuristic evaluation and usability testing), user-centered design
and user interface design in both theory and practice. Each student team consisted of
three to five students working 200 to 230 hours each in planning the usability activities,
carrying out the usability evaluation and improvement activities, collecting data,
communicating the evaluation results and suggested Ul improvements to the OSS
development project, and writing a project report.

The student teams introduced usability activities into their selected OSS development
project in a way that was based on the experience and guidance of the author and
collected data related to these usability activities and to the history, structure, and culture

11

of that particular OSS development project. The author supervised and guided the
usability activities introduced by the student teams, analyzed the impact of usability
activities on the case projects, and made research assumptions for the following cases.

1.4 Structure of the thesis

This thesis has been divided into the following parts: Introduction, Related work,
Research process and procedure, Analysis and synthesis, and Summary.

Related work (Chapter 2) establishes the theoretical background for the thesis, links
it to the existing research in this area, and presents the key concepts and definitions in
this research area.

Research process and procedure (Chapter 3) establishes the research process and
outlines the procedures of the research.

Analysis and synthesis (Chapters 4 and 5) establishes the answers to the research
questions. First, the differences and commonalities of the existing usability cost-benefit
analysis models are identified and analyzed (Chapter 4). Second, these usability cost-
benefit analysis considerations are contrasted with the commercial SW development in
order to estimate how well they fit into the commercial SW development context. Third,
the existing usability cost-benefit considerations are modified so that they can be applied
in the open source software development context (section 5.3). Fourth, these modified
usability costs and benefits are contrasted with the OSS development context in order to
estimate how well they fit into open source software development projects.

Summary (Chapter 6) presents the results of the research, a final summary of the
research, and the contribution of this research to the research and practice; identifies the
limitations of this research; identifies areas for future research; and discloses the research
and results of the thesis.

12

2 Related work

This chapter establishes the theoretical background for the thesis, links it to the existing
research in this area, and presents the key concepts and definitions in this research area.

2.1 Usability and usability cost-benefit analysis

“E-commerce shifts the emphasis from the advantages of being usable to the
penalties of not being usable” (Hughes 2002).

The development context affects usability and usability cost-benefit considerations.
There are also studies that indicate that the type of development context has an effect
regarding usability, user-centered design activities and level, and ease of user
involvement (livari & Molin-Juustila 2009). For example, the benefits of better usability
of SW developed for in-house use can be identified within the development organization
(c.f. Bevan 2000), reduced development and support costs can be seen as having more
impact when SW is tailored for specific customers, and increased sales can be seen as
having more impact in the product development context.

2.1.1 Usability

“Would somebody please think of the users?” (Author)

Usability is defined as one of the main SW product and system quality attributes in the
international standard ISO 9126. In this standard, usability refers to the capability of the
product to be understood, learned, used by, and attractive to the user, when used under
specified conditions (ISO 9126). The second common definition for usability is in
standard ISO 9241-11, where usability is defined as being the extent to which a product
can be used by specified users to achieve specified goals with effectiveness, efficiency,
and satisfaction in a specified context of use (ISO 9241). The third common usability
definition is by Nielsen and Schneiderman, who define usability as consisting of five
quality components: learnability, efficiency, memorability, errors, and satisfaction
(Nielsen 1993, Schneiderman 1998). In this thesis, usability is defined as in the ISO
9241-11 standard and the terms usability engineering (UE), human factors (HF), usability
work, usability activities, and user-centered design are used synonymously. Usability can
be achieved through a user-centered design process, usability activities (e.g., usability
testing, paper prototyping, heuristic evaluation), and having an overall focus on usability
issues through the entire development process (c.f. Boivie et al. 2005, Gulliksen et al.
2003, Gould 1997, Landauer 1995).

2.1.2 Cost-benefit analysis

Cost-benefit analysis is a method for assessing the projects from the investment point of
view (Karat 1994). This method is based on making investment decisions by comparing
the estimated costs and benefits of the planned actions. This comparison is based on
collected and analyzed data regarding technology and finance. This comparison helps the
management to focus the available resources in the most useful way on such planned
activities that have low costs and potentially high benefits. While there are plenty of
different cost-benefit models for different contexts ranging from restricting carnivorous
plants (Givnish et al. 1984), rural to urban migration (Speare 1971), and to electronic
medical records (Wang et al. 2003), there are relatively few published models for

13

analyzing the costs and benefits of usability in the company development context. In a
literature search of HCI journals, ACM and IEEE digital libraries, and top conference
proceedings from 2005 to 2011, no similar interpretive case studies were found from the
mainstream HCI research where usability cost-benefit analysis models would have been
used in an empirical setting, or where the results of using usability cost-benefit
considerations in an empirical setting would have been contrasted with the existing
usability cost-benefit analysis literature.

The usability cost-benefit analysis models explored in this thesis from the book Cost-
Justifying Usability (Bias & Mayhew 1994) are by Ehrlich and Rohn, Karat, and
Mayhew and Mantei. The second edition of the book was published in 2005 and it did
not change the usability cost-benefit models but rather had a specific focus of applying
usability cost-benefit considerations to web and intranet contexts (Bias & Mayhew 2005).
In addition, the thesis explores usability cost-benefit analysis models by Bevan (2000)
and Donahue (2001). These usability cost-benefit analysis models are described in more
detail in Paper I and are very different in their categorization of the usability cost and
benefits and the amount of provided guidelines and identified empirical background for
the usability cost-benefit analysis.

The usability cost-benefit analysis method has three steps and it proceeds as follows
(Burrill & Ellsworth 1980):

1. Identify the financial value of expected project cost and benefit variables.

2. Analyze the relationship between expected costs and benefits using simple or
sophisticated selection techniques.

3. Make the investment decision.

Cost in the cost-benefit analysis context means the estimated or projected monetary
or abstract expense of doing a particular action or starting a particular project. This cost
can be concrete and, therefore, easily measurable and quantifiable, or abstract and,
therefore, difficult to measure or quantify in financial terms (Burrill & Ellsworth 1980).
The objective is to find more or less accurate financial estimates for each of the costs, be
they concrete or abstract by nature. Sometimes it may be impossible to estimate a reliable
financial impact for the abstract costs. In these cases, the best estimate or the range of
various estimates is presented and the inaccuracy of the estimation is taken into account
when the costs are analyzed.

In an SW development project, the typical concrete costs are direct project expenses
(e.g., salaries of the project personnel and expenses of project offices), one-time
purchases (e.g., equipment and software), one-time deployment costs (e.g., reduced
productivity due to implementing new technology) and continuous overall expenses (e.g.,
maintenance and support for offices and equipment, training of the personnel). In
addition to these concrete costs, there can be many kinds of abstract costs impacting the
project. For example, the problems in knowledge transfer due to high staff turnover will
cause the project indirect costs that are very difficult to estimate and quantify in monetary
terms. However, even these kinds of difficult-to-estimate and abstract costs should be
taken into account, even if the exact monetary value cannot be evaluated by any
reasonable means (DIRKS 2003).

Benefit in cost-benefit analysis is an expected positive result of the planned action or
project through either cost saving or estimated added value (Burrill & Ellsworth 1980,
DIRKS 2003). Just like costs, benefits can be divided into concrete and abstract
categories. In any kind of project, typical concrete benefits can be divided as improved

14

productivity (e.g., due to smaller expenses or when available resources are used more
efficiently), improved effectiveness (e.g., by optimizing the provided services) and
indirect benefits (e.g., using the analysis for process improvement) (DIRKS 2003).
Abstract benefits in any kind of project or organization might be, for example, improved
customer loyalty or the increased reputation of the company. These kinds of abstract
benefits are extremely difficult to evaluate or quantify in monetary terms; in fact, it is
argued that the amount and impact of the improved reputation of the organization cannot
be measured in any sensible way (Due 1989).

2.1.3 User-centered design

“Making the world a better place one user interface at a time.” (Author)

In the early days of information technology, the SW developers were usually themselves

the users of the SW they wrote and, therefore, knew their own needs and the context of

use. Now IT solutions are used everywhere and users can be of any age, from any

culture, or from any context imaginable. The SW developers no longer have direct

knowledge about the tasks, skills, and experience of the users, or information about the

context within which the system is used. This can result in SW that does not answer to

the functional needs of the user, but has plenty of extra unnecessary features, and does

not sit well in the established work process of the user. SW developers need information

about users and the context of use. UCD has been developed to fulfill this role.

According to international standard ISO 13407, UCD can be described as consisting of

four principles and four iterative design activities. The four principles of user-centered

design identified in ISO 13407 are:

e Active involvement of users in design activities

e [terative design where design solutions are produced in iterative and incremental
fashion

e Multi-disciplinary design where skills and views of people with various backgrounds
are utilized in the design

e Allocation of tasks and functions to system and to user where appropriate

The four user-centered design activities need to start at the beginning of a development
project in iterative fashion, and these activities identified in ISO 13407 are:

e Understanding and specifying the context of use

e Specifying the user, task, and organizational requirements
e Producing design solutions

e Evaluating designs against requirements

The iterative and incremental user-centered design process continues until the design
solution is evaluated as fulfilling all the user and organizational requirements (ISO
13407).

The user-centered design process may include several usability improvement actions.
In understanding and specifying the context of use and specifying the user and
organizational requirements, these usability improvement actions can be, for example,
creating personas, customer visits, and usability requirement workshops (c.f. Gulliksen et
al. 2003). In producing design solutions and evaluating those against requirements, the
usability improvement actions can be in the form of paper prototyping, expert evaluation,
usability testing, and so on (Gulliksen et al. 2003).

15

One recent study has examined user-centeredness in the systems development context
from the viewpoint of the four principles of user-centered design. This study found that
there are considerable variations in how four allegedly user-centered systems design
methods address the four principles of user-centeredness (livari & livari 2010).

2.2 OSS development

OSS is computer software that is freely available as source code—and often also as a
precompiled binary file—where the license permits the users to read, change, and modify
the source code as derived works, recompile the modified source code to binary form,
and distribute the modified source code as a derivative under the same license as the
original source code. The fundamental idea of OSS is to enable software to evolve freely
by exploiting community participation. OSS also makes it possible for end users to adapt
software to their personal needs and fix defects (Raymond 1999).

There are different kinds of licenses used in OSS such as GNU General Public
License (GPL), GNU Library General Public License (LGPL), and BSD Licenses. OSS
development has gained interest in Information Systems (IS) research in recent years
(see, e.g., Fitzgerald 2006, Niederman et al. 2006) and OSS development has been
argued to be highly influential in the future software landscape (Fitzgerald 2006).

Usually, the OSS is developed as a public and collaborative effort in the OSS
development project with core developers, developers, contributors, and users. The OSS
communities are often depicted with an onion model with different layers representing
the level of involvement within that particular OSS community (cf. Aberdour 2007).

2.2.1 Historical and cultural background of OSS

Software communities that can be compared to modern free/open software communities
have existed for a long time before the free software movement and before the term “free
software” was coined (Levy 1984). The free software movement was launched in 1983 as
a social and political movement to advocate what was seen as the basic freedoms of
software users. These freedoms were identified as the freedom to run the software,
freedom to study the software, freedom to change the software in any way that the user
sees as necessary, and the freedom to distribute copies of the software with or without
changes to it. These freedoms are seen as promoting the progression of technology since
much of the wasteful duplication of programming efforts could be avoided and these
efforts can instead go into advancing the state of the art (Stallman 1985, referenced in
Wardrip-Fruin & Montfort 2003). A reflective analysis of the hacker culture and free
software principles and communities by Raymond (1997) motivated Netscape to release
its internet browser as free software. This was the starting point of the popular Mozilla
Firefox internet browser and the Thunderbird email client. The term “open source” was
coined to rebrand the free software movement so that it would be more appealing to the
commercial software industry in order that it would see the benefits of the open
development process. The Open Source Initiative was founded in 1998 to promote this
new term and to advocate the open source principles (opensource.org). The members of
the free software movement objected to this open source approach and felt that by
concentrating only on the openness of the source code, the important philosophical and
social values about the basic freedoms of the software users were ignored (gnu.org).
Despite the differences in some ideologies, the OSS and free software communities share
many of the core values, such as placing a high value on freedom of speech, regarding

16

programs as communal resources, and considering free information sharing as a right and
an ideal (Rolandsson ef al. 2009, Himanen 2001, Szczepanska et al. 2003). Also helping
others so that they may solve new problems instead of readdressing old ones, and
technical knowledge, skill, and learning for its own sake are common values for both
communities (Rolandsson et al. 2009, Raymond 2003, Stewart & Gosain 2006).

2.2.2 OSS development community

An OSS development project is a loosely coupled community kept together by strong
common values such as that software should be free and work is kept together by one or
a few coordinators (Ljungberg 2000). The OSS community is often depicted with an
onion model with different layers representing the level of involvement within that
particular OSS community. In a typical OSS community, there is a lead developer or a
small group of developers forming a core team that controls the overall architectural
design and the course of the project (Feller & Fizgerald 2000, Mockus et al. 2000). These
project leaders making decisions in the project form the hard core of the onion. These
project leaders are often supported by committers having direct write access to the
project's source code, but required to ask permission for major modifications before
committing a change. Contributors are external developers and users who send bug
reports and minor fixes for errors in the code. Although these contributors can download
and modify the source code, they do not have the power to upload their modifications to
the official source code repository of the project. The outer layer of the onion consists of
end users who do not participate in the community, but only use the software (Aberdour
2007). The level and structure of organization varies between different OSS development
projects but usually small and medium-sized OSS development projects have an
informal, shallow, and meritocratic organizational structure where the contributors,
whose contribution is seen as being important or innovative, are often given developer or
core-developer status by the decision of the developers or community as a whole. One of
the main motivational forces in the community is the status, fame, reputation, and
recognition that a contribution can give to the developer (Raymond 1999, Aberdour
2007, Bergquist & Ljungberg 2001, Berquist 2003, Zeitlyn 2003).

2.2.3 OSS developers as users

Technically skilled developers have traditionally developed OSS for their own use, but
OSS solutions now have increasingly more users who lack in-depth technical knowledge.
The OSS solutions have tended to be useful since the developers have produced tools that
they themselves use and, therefore, know the user, task, and organizational requirements
of those tools, as well as their context of use; however, usability has not traditionally
been their major concern. There is now an increasing number of OSS solutions that have
user populations that no longer consist solely of developer-users; most of the users of
several popular OSS solutions, such as the popular web browser Firefox, may not be
capable of adapting the software to their needs or fixing or reporting defects like
developer-users could (Giuri et al. 2004). However, some studies indicate that the OSS
community is starting to acknowledge that ‘we are not our users,’ usability of the OSS is
poor, and the OSS development process should be characterized as anything but user
centered (Frishberg et al. 2002, Benson et al. 2004, Nichols & Twidale 2006, Pemberton
2004, Zhao & Deek 2005, Zhao & Deek 2006).

17

Improving OSS usability and bringing usability activities into OSS development have
not been researched in detail until recently, but as more non-developer users start to use
OSS, the importance of these factors will increase. A similar phenomenon can be
identified when non-technical users first started using computers and software they had
not developed themselves, and the difficulties using the systems and software they had
not developed was the impetus for the first usability studies. A similar trend can also be
seen in web interfaces where, first, only the technically savvy people could use or
develop web pages. Even though recent studies have described some usability activities
that have already been carried out in some OSS projects (Andreasen et al. 2006, Bach &
Carroll 2009, Back et al. 2009, Terry et al. 2010), the current status of usability activities
in OSS projects and the usability of OSS still tend to be quite poor (e.g., Cetin et al.
2007, Nichols & Twidale 2003, Nichols & Twidale 2006, Zhao & Deek 2005, Zhao &
Deek 2006), and this is still the case, especially in small and medium-sized OSS projects
where the developers typically do not have theoretical or practical knowledge about user
interface and usability methods and practices, and in OSS projects without company
involvement. When a company is involved in an OSS project, it usually brings its UI and
usability methods and practices into the development roadmap.

2.2.4 OSS developers as managers

One of the most common models in coordinating OSS development projects is that
several contributors work under a single ‘benevolent dictator’ who is usually the founder
of the project and who attracts committed and talented contributors (Ljungberg 2000). An
alternative to having one single benevolent dictator is rotating dictatorship or forming a
voting committee from the developers (Ljungberg 2000). To a certain extent, the core
developers can be argued to have the same characteristics as managers in commercial
software development. Core developers make both low-level decisions regarding whether
or not a particular contribution is accepted to the code, mid-level decisions regarding
software features to be included in individual releases, and strategic decisions regarding
the direction of the development in the future as well as the development roadmap.

However, some clear differences are also apparent when comparing OSS core
developers to the managers in commercial SW development. First, the core developers in
the OSS development context do not usually issue tasks for individual developers or
issue strict development deadlines. Second, in most OSS projects, the core developers do
not have to budget and allocate limited human, technological, or financial resources. The
managers in commercial software development have to balance the development
activities within the overall resources allocated to them. Since all usability activities
require some kind of resources, management support is important when trying to bring
usability activities to commercial software development. This is why the traditional
usability cost-benefit analysis models focus heavily on gaining management commitment
and support by identifying areas such as the lesser need for resources as a result of
usability activities. This approach is not directly suitable for advocating usability
activities in OSS projects because of the lack of budgeted resources and, therefore, the
OSS context needs its own tailored usability cost-benefit aspects in order to catch the
interest of OSS core developers who are not concerned about time or resources (Rajanen
& Tlivari 2010).

18

3 Research approach and methods

3.1 Research approaches

The research process of this thesis utilizes conceptual-analytical and constructive
research approaches (March & Smith 1995, Jarvinen 2000). In IS research, the design
science approach is a type of scientific research that aims to develop new or improved
ways to achieve human goals (c.f. March & Smith 1995, Hevner et al. 2004). Design
science consists of two basic activities: building and evaluating. Building is a process for
constructing an artifact for a specified purpose, and evaluating is a process of
determining how well the constructed artifact performs in that specified purpose (March
& Smith 1995). Building and evaluating IT artifacts has design science intent (March &
Smith 1995). In this thesis, Paper V has the perspective of building a usability cost-
benefit model to fit into the OSS development context and Paper IV has the perspective
of evaluating these OSS usability cost-benefit considerations. March and Smith
differentiate two cases concerning when the construct already exists in some form and
when the construct has not existed before in any shape or form. In case the construct is
totally new, the contribution of the research comes from the novelty of the artifact and the
persuasiveness of the claims that it is effective (c.f. March & Smith 1995, Jarvinen 2000).
In case the construct has already existed in some form, the contribution of the research
lies in the new form of the construct being, in some sense, better than the old one (c.f.
March & Smith 1995, Jarvinen 2000).

Case study research is an empirical enquiry in which the focus is on a contemporary
phenomenon in its real-life context when the boundaries between the phenomenon and its
context are not clearly evident, and in which multiple sources of evidence are used (Yin
1994). The case studies may be explanatory, exploratory, or descriptive and can be either
qualitative, quantitative, or both (Yin 1994). An explanatory case study is used to study
and explain a particular case and find its underlying principles. An exploratory case study
is used to study the case in depth. A descriptive or interpretive case study tries to
understand and make sense of the case and not to explain it in a predictive sense.
However, there is no exclusivity between explanatory, exploratory, and descriptive case
studies (Yin 1994). In case study research, the theoretical propositions are used as
sensitizing devices to guide the collection and analysis of the data and typically multiple
sources of data are preferable (Yin 1994).

Table 1. Research questions and research approaches.

Research question Research approach

RQI1: What are the strengths, weaknesses, | Conceptual analytical

differences, and commonalities of the existing

usability cost-benefit analysis literature? Understand

RQ2: How do the existing usability cost-benefit | Case study, qualitative research

considerations fit into practice?
Understand

RQ3: How do usability costs and benefits fit | Conceptual analytical, constructive research,
into the open source software development | case study qualitative research,
context?

Understand, Evaluate

19

In this thesis, Papers I, 11, and III are focused on understanding the usability cost-benefit
analysis in the commercial development context. Paper III also evaluates the usability
cost-benefit analysis in the commercial development context. Paper IV and Paper V are
focused on understanding the OSS development context and building and evaluating the
usability cost-benefit considerations fitting the OSS development context.

Table 2. Papers and research process

Commercial OSS
Understand I II, IIT v,V
Build \Y
Evaluate 111 v

3.2 Data gathering and analysis

The empirical data in this thesis were gathered from one case in the commercial SW
development context and four cases in the OSS development context. The commercial
SW development case organization was a small to medium-sized SW development
company that was developing large-scale business-to-business IS- and SW-intensive
products for international markets. Access to this case organization was gained through a
research project attempting to introduce usability activities into SW development
organizations. The case project participation and data gathering lasted two years.

Access to the four cases in the OSS development context was gained through four
student usability projects: UKKOSS 1, UKKOSS 2, UKKOSS 3, and UKKOSS 4. These
student usability projects aimed to introduce usability activities into OSS development
projects. The student usability projects communicated with their allocated OSS
development project and tried to introduce usability activities into it in order to have a
‘wake-up call’ (cf. Schaffer 2004) among the core developers and the community
regarding the importance of usability.

Table 3. Description of the OSS case projects

Case 1 Case 2 Case 3 Case 4
Number of | ~30 developers | ~15 developers | ~40 developers | ~20 developers
developers
Number of | Medium to large | Small user | Very large user | Very large user
users user base | base (<1000) base (>800.000) | base (>800.000)
(<16.000)
Application Media center | Game 3D content | Media center
type software creation software
software
St