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Abstract: We present a new method to include a 3D wavy heliospheric currerttist@a 2D numerical
model of the heliospheric transport of galactic cosmic rays. Using alytagal solution for the flat sheet,
we apply it to the wavy sheet assuming its local quasi-flatness. We stueyféloes of the current sheet
in the cosmic ray spectrum and the dominant streaming patterns of casysiénrthe heliosphere for
different solar polarities and tilt angles of the current sheet.

Introduction tion to the following set of stochastic differenti:
equations (see [9] for details)

Although the heliospheric modulation of galactic PR

cosmic rays (GCR) is well understood, some ques- A7 = 75 57 (r*#rr) At + (Vaw + (vp):) At

tions, e.g., on relative roles of different modula- +Ru1v2Kg9 At

tion mechanisms remain open. Here we concen- Lo ) o

trate on the effect of the heliospheric current sheet Ap = ﬁaﬁ((l H ) Koo At — =

(HCS) drift, which is important for the modula- 2

tion, but very difficult to model (e.g., [1, 2, 3]). (VD)o AL + Ry /77 (1 — 412) koo At

We present here a quasi-steady 2D model of GCR AT = -2Vt Np (1)

transport which can be used to study the drift-

dominated modulation during periods of low solar

activity when the HCS is well organized and the Wherer and ¢ are the helio-distance and heli

heliospheric conditions are fairly quiet. latitude, T" is the particle’s kinetic energy, =
cos 6, « the diffusion coefficient{vp) is the drift
velocity, Vs, is the solar wind velocity, and®,,;

Themodel andR,, are normally distributed random numbe
with unit deviation.

The present model is based, as most modulation 1y kinds of drifts are important: the drift cause

models, on a numerical solution of Parker's equa- y gradient and curvature of the HMF that has b

tion of GCR transport in the heliosphere [4], which | 54ial and latitudinal components; and the H(¢

cannot be (in a general case) solved analytically. §yift that drives GCR along the sheet and effe

This equation is usually solved numerically using tively operates in the radial direction. The tw

the finite difference technique (e.g., [1, 3]), butan qyifis complement each other, leading to a div

alternative stochastic simulation method has been genceless situation. The drifts reverse their dir

developed recently (e.g., [5, 6, 7]). It is based on o to the opposite with the changing sign of t

the equivalence between a Fokker-Planck differ- vk every 11 years.

ential equation and a set of ordinary differential

equations [8], and reduces the 2D Parker’s equa-
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tilt angle from 0 to40°. HCS has a 3D-structure
but we reduce the problem to a 2D case by study
the drift at one longitude at a time and by averagi
the final result over all longitudes.

Let us consider a GCR particle at the point wi
coordinates i, 0, ¢,,) in the vicinity of a HCS
(see Fig. 1). First we find the minimum distan
from the particle to the sheet (pointy(6y)), Then
we calculate the HCS drift velocity of the partic
2 assuming a locally quasi-flat sheet (guaranteec
Eqg. 3) and applying Eq. 2. The drift velocity is ta
T gential to the sheet and its direction depends on
polarity of HMF. Although the drift direction lies
in the r — @ plane sufficiently far away from the
Sun where the HMF lines are nearly azimuthal, 1
azimuthal component of the drift velocity is lar¢
in the inner heliosphere. However, the azimutl
component gets to zero when averaging over

Figure 1: Wavy HCS (grey line) and the drift ve-
locity vector for a particle at positiofr,, 6,,).

Modeling the HCS drift longitudes. We take the changing spiral angle ii
account by multiplying the drift velocity byin 1,
Flat sheet where is the spiral angle. Now we have cé

culated the particle’s drift velocity at the positic
First we obtained an analytical HCS drift velocity, (rp,0,, ¢,). Next we slightly change the longitud
(vp)s, in case of a flat sheet, in a way similar to ¢, and calculate the corresponding HCS drift \
[2]. It can be parameterized as a function of the ra- locity. We repeat this procedure for all longitude
tio of the particle’s Larmor radiusg to its distance ~ then sum up the radial and latitudinal compone
tothe HCSR,,,y = Lo/Ry: of the drift velocity vector and average the rest
The average latitudinal component of the HCS d
VDS _ 45 — 040 4008842 (2)  appears negligible with respect to the radial co
v ponent, and we study here only the effect of 1

radial component.

whenevery <2. Since this approximation is lim-
ited by an assumption on the homogeneity of HMF
around HCS [3], we reduce the drift gradually with  RegIts and Discussion
increasing rigidity, so that GCR particles with the
rigidity P experience this drift only in an "effec-

) ) ! i he full 2D | of R heliospheri
tive” drift region ofr < Dp, where using the fu model of GC eliospnert

transport and the newly developed model of Hi
_ drift, we study streaming patterns of GCR in tl

Dp/100AU = 1GV/P. 3
o/ / ) heliosphere in the presence of drifts. We divid
o the 2D heliosphere into cells of equal size of
Drift in awavy current sheet AU x 4 AU. We studied the cases of flat HC

_ . . (the tilt anglea= 2°) and wavy HCS (49) for the
The assumption of a flat sheet is realistic only dur- 4 nojarities of HMF. For illustration we studie

ing the solar minimum when the HCS tilt angle is  5cR with the initial rigidity of P = 2 GV, keep-
small. A more realistic approach of a wavy HCS ing the diffusion coefficient at, = 3.0 i 10-7

is needed at other times. However, as the tilt angle 5j2¢-1 Gyv-1_ Each time a particle left a cell, w

increases above abott®, the HCS structure gets | oorded its "velocity” components, = AX/A,t

more complicated and HCS drift becomes ineffec- ;.4\, = Ay/At. Then the streaming pattern w:
Y . 4

tive. Here we present a new way to numerically computed by averaging over the whole setvof
calculate the HCS drift for a wavy sheet with the -
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Figure 2: Streaming patterns of 2 GV particles for relagilelv modulation £ = 3.010~7 AU?s GV 1)
in @) gA > 0 conditions witha: = 2°, b) gA < 0 conditions witho = 2°, ¢) gA > 0 conditions withn = 4(°,
d) gA < 0 conditions witha = 40°.
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