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In the present paper we consider a possibility of using stochastic simulation (Monte-Carlo) technique approach to
the study of Galactic Cosmic Ray propagation in the Heliosphere. We developed a technique for calculation of the
cosmic ray propagation in a spherically symmetric steady state approximation of the Heliosphere. A comparison
of the calculation results with those obtained by other methods as well as with an analytical approximation shows
a good agreement. Besides, in the frameworks of the approximation used, we calculated the solar modulation of
monoenergetic fluxes of Galactic Cosmic Rays entering the Heliosphere, in the particle’s energy range 0.1 - 15
GeV. We studied the details of the modulation in their dependence of the initial particle’s energy. In particular,

a linear scaling of particle’s energy losses wvs. diffusion time is shown.

1. Introduction

Study of transport of Galactic Cosmic Rays
(GCR) in the Heliosphere is of great interest and
importance. At present, there is no opportunity
to measure GCR in situ, outside the Heliosphere.
Therefore, it is important to know the details of
solar modulation of GCR. On the other hand,
knowledge of GCR transport processes might help
in study of the heliospheric properties.

During last decades, the study of GCR trans-
port in the Heliosphere has been improved and
many models have been developed. Simple
spherically- symmetric steady state ones (e.g. [1]
and references therein) are good enough for a
study of global modulation processes, while very
sofisticated 2D and 3D time-dependent models
(e.g. [2-4]) are used for study of fine short-time
scale processes. All the models developed so far
use various kind of finite differences numerical
techniques.

Since the equation of GCR transport in the He-
liosphere takes a form of Fokker-Plank equation
(see eq.(1) below), one can apply a very flexible
Monte-Carlo techniques to solve it (i.g. [5-7]).
Recently, since the power of computers increased
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significantly, Monte-Carlo techniques have been
applied to a number of astrophysical problems:
transport of solar particles in the solar atmo-
sphere (e.g. [8-10}), interplanetary space [11-14],
particles’ stochastic acceleration [5,15]. In the
present study we use, at the first time, Monte-
Carlo approach to GCR transport in the Helio-
sphere. The method is described in Section 2.

In Section 3 we show that the stochastic simu-
lation techniques reproduces adequatelly a spher-
ically symmetric steady state model of the Helio-
sphere.

An important advantage of Monte-Carlo tech-
niques is that one can use a monoenergetic flux
as the initial spectrum of GCR protons. This al-
lows one to obtain Green functions of the process,
making it easy to obtain the modulated spectrum
for any kind of assumed local interstellar spec-
trum (LIS). Besides, the use of monoenergetic
fluxes allows us to study the details of modula-
tion (such as time spent by a particle inside the
Heliosphere or average energy loss) in dependence
of the galactic proton’s energy (see Section 4).

In the present paper we present the first re-
sults of application of Monte-Carlo approach to
the problem of GCR transport in the Heliosphere.
We apply the method to a spherically symmetric
steady state model and demonstrated that our

0920-5632/99/$ — see front matter © 1999 Elsevier Science B.V. All rights reserved.

PII 80920-5632(99)00518-6



M. Gervasi et al./Nuclear Physics B (Proc. Suppl.) 78 (1999) 26-31 27

approach works adequatelly for this approxima-
tion.

2. Cosmic ray transport in the Heliosphere

Transport of GCR in the Heliosphere is de-
scribed by the Fokker-Plank equation which can
be written in the spherically symmetric case as
[16,17]:
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where U(r,T,t) is the cosmic ray number den-
sity per unit interval of kinetic energy T per nu-
cleon, r - distance from the Sun, V - velocity of
the radially directed solar wind, T" - particle’s ki-
netic energy per nucleon, & - diffusion coefficient,
%, T, - proton’s rest energy. This equa-
tion includes three major processes of GCR prop-
agation in the Heliosphere : diffusion, convection
by the outgoing solar wind and adiabatic energy
losses. For a steady state approximation we can
set %—l{ = 0.

Let’s consider F = 4nr?U and assume that
V = const(r). Using this one can write eq.(1)
in the form:
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The Fokker-Plank equation can be solved by
various numerical methods. In our study, we
make use of the stochastic simulation method
based on the equivalence between Fokker-Plank
equations and stochastic differential equations
[6,18] which can be solved numerically. The real-
isation of the numerical techniques we use here is
similar to that applied recently for a study of so-
lar particles’ interplanetary transport [14]. Note
that the problem of GCR transport differs signif-
icantly from a problem of solar particle transport
as the source of GCR particles is outside the He-
liosphere.

According to the stochastic simulation tech-
niques, changes of a test particle’s coordinate and
energy during a small discrete time step At can
be described, for the case of eq.(2), as [14] :

2 VaT
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where G is Gaussian distributed random number
with unit variance.

Thus, using egs.(3,4) and small At we can trace
“particles” step by step, fixing their radial dis-
tance and energy, as well as time spent inside the
Heliosphere. Note that what we call as “parti-
cles” in the techniques are not really traced par-
ticles but rather some quasi-particles which, when
averaged over the ensemble and time, reproduce
the distribution of real particles.

Following the standard quasi-linear theory and
taking into account the observations of the mean
free path of solar particles, we adopt for the dif-
fusion coefficient the form (e.g. [19]) :

( ke-B-P fP>P
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where rigidity P,.=1 GV.

For the calculations we made use of the follow-
ing parameters. The Heliosphere has the size of
Ry,=100 au; the solar wind velocity is taken to
be a constant V' = 400 km/s inside the Helio-
sphere. We considered as proton spectrum out-
side the Heliosphere both a model LIS (see Fig.1
and Section 3) and monoenergetic flux (Section
4). Particles are fixed in vicinity of the Earth’s
orbit (0.9 au < r < 1.1 au), similar to (14]. At
the distance of 0.1 au there is a “mirror” which
“reflectes” particles from the Sun. Being aver-
aged over time, the number of particles fixed at
the vicinity of the Earth’s orbit corresponds to
steady state solution of eq.(1).

Note, that though Monte-Carlo techniques re-
quires long calculations, one can collect statistics
for a set of smaller calculations.

At (3)

3. Testing of the techniques

In order to test the techniques we performed
calculations for a heliospheric model which allows
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Figure 1. Testing the techniques. Solid line -
proton LIS [20]; dotted line - analytical solution
(eq.(7)), circles - our corresponding calculations;
dashed line - calculations of medium modulation
by [21], stars - our calculations for the same pa-
rameters.

an analytical solution. This model with only dif-
fusion and convection terms is described with the
following equation (comp. to (1)):

;55-;(7' E-a;—)—‘ﬁb—r(’f VU):O (6)
and takes the following solution inside the Helio-
sphere:

Ur.P) = flP)- exp( = —r=(Ra=r)) (1)

where Uy corresponds to LIS. The dotted line in
Fig.1 shows the analytical solution of eq.(6) for
proton LIS as given in [20]. Circles denote the
results of the stochastic simulation solution of the
same equation. One can see that the simulation
precisely reproduces the analytics.

Then we compared our results for spherically-
symmetric modulation with those obtained by
other methods, using the same model parameters
and the same proton LIS. For the comparison,
we took a recent study of GCR propagation in
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Figure 2. Modulated monoenergetic protons
fluxes for medium (a) and weak (b) modulation.
T,=0.3,0.7, 1, 3, 10 GeV.

the Heliosphere in a spherically-symmetric steady
state approximationthrough a numerical solution
by means of finite differences of eq.(1) [21]. Fol-
lowing this paper we took the LIS of GCR as
given by Webber and Potgieter [20] and the solar
modulation strength (e.g. [22]) ® = M&;’M =
350 MV (weak modulation), and ® = 750 MV
(medium modulation). Besides, in order to repro-
duce exactly their calculation we took the diffu-
sion coefficient to be k = k,6P instead of eq.(5).
The results are also shown in Fig.1 (dashed line
denotes the results of [21] and starts - our calcula-
tions). One can see a good agreement though we
did not expect the exact coincidence as different
approaches have been used.

Thus, we have shown that the stochastic sim-
ulation techniques adequately simulates GCR
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Figure 3. Energy loss of protons with initial en-
ergy T, inside the Heliosphere for medium and
weak modulation.

propagation in the Heliosphere in a spherically
symmetric steady state approximation.

4. Modulation of monoenergetic galactic
cosmic ray fluxes

In contrast to other methods of numerical solu-
tion of the transport equation, the stochastic sim-
ulation techniques allows one to simulate Green
functions of a process. If we trace GCR particles
with initial energy T}, (the initial LIS is 6(T'—T5))
we can study the effect of modulation for monoen-
ergetic flux or, in other words, Green function of
the solar modulation of GCR. Once calculating
a set of Green functions for various T, and pre-
senting the initial interstellar spectrum as a su-
perposition of §-functions, we can easily obtain
the corresponding modulated spectrum for any
assumptions on the LIS without new calculations.

The results of the monoenergetic fluxes modu-
lation are shown in Fig.2. The Figure shows the
spread in energy of monoenergetic flux after mod-
ulation (at the Earth's orbit). The initial LIS is
considered to be §(T" — T,). The Figure shows
Green functions for a set of five initial energies
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Figure 4. Time spent by protons with initial en-
ergy T, inside the Heliosphere for medium and
weak modulation.

T, = 0.3, 0.7, 1, 3, 10 GeV for medium (®=750
MV) and weak ($=350 MV) modulation condi-
tions. As we are able to simulate the modulation
of a monoenergetic flux, we can study energy de-
pendence of the modulation. Fig.3 shows the av-
eraged energy losses of particles (due to adiabatic
deceleration) before they reach the Earth’s orbit
in the dependence on the initial energy T, for
medium and weak modulation conditions. The
energy loss is connected to the time spent by
a particle diffusing in the Heliosphere before it
reaches the Earth’s orbit. This time is shown in
Fig.4 in dependence on the initial energy T, for
medium and weak modulation conditions. One
can see that the time of diffusion varies from few
days up to half an year though it takes only about
half a day for a photon to pass the distance of 99
au. This gives the averaged diffusion radial veloc-
ity starting from about 1000 km/sec for medium
modulation, and from 1500 km/sec for weak mod-
ulation, rapidly increasing with the initial parti-
cle’s energy.

The time in Fig. 4 is in agreement with the
observed delays between the solar activity and
long-time variations of cosmic ray flux detected
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Figure 5. The modulation depth (see text) for
protons with initial energy T, for medium and
weak modulation.

by ground based neutron monitors (energy range:
100 MeV - few GeV) [23]. This delay is found to
be several months (up to one year) for odd solar
cycles when the modulation is considered to be
diffusion-dominated (e.g. [24]) and a spherically
symmetric approximation adequately reproduces
the protons modulation. For even cycles with
drift-dominated modulation, the observed time
delay is shorter [23].

Fig.5 shows modulation depth in dependence
of the initial proton’s energy T, for medium and
weak modulation conditions. Here, as modula-
tion depth we mean a part of particles with the
initial energy T, which can reach the Earth’s or-
bit. In other words, the modulation depth is an
integral of curves in Fig.2 over the energy. One
can see that for the initial energy of few hundred
MeV, the depressing of GCR flux varies from one
(weak modulation) up to two orders of magnitude
giving huge variations during a cycle of solar ac-
tivity. For the initial energy of about 10 GeV, the
modulation depth is of the order of magnitude of
10% though the variations of the GCR flux within
a solar cycle are only few -percent.

Fig.6 shows what part of the initial energy T}, of

Figure 6. The part of energy dT'/T, lost by pro-
tons with initial energy T, vs. time spent in the
Heliosphere for medium (circles) and weak (stars)
modulation. The line is the linear fit (see text).

a particle is lost in dependence of the time spent
by the particle inside of the Heliosphere. Calcu-
lated points (circles - for medium and stars - for
weak modulation) correspond to the values of T,
=10,7, 3,1, 0.7, 0.3 GeV {(from the left to the
right). One can see a linear scaling of the dT/T,
value vs. time spent in the Heliosphere. The lin-
ear fit is dT'/T, = 4.72-1073-t, where ¢ is in days.
The linear scaling does not depend on the modu-
lation strength as points lie on the same line for
medium and weak modulation conditions. This
means that the time spent by a particle inside
the Heliosphere is a very important parameter for
modulation as it defines the adiabatic energy loss
of a particle

5. Conclusions

In the present paper we, for the first time, in-
troduced the stochastic simulation (Monte-Carlo)
techniques for a study of GCR transport inside
the Heliosphere and modelling of solar modula-
tion of GCR. We have shown that the simulation
results agree with analytical solution for a case
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without adiabatic energy losses, as well as with
results obtained by other authors using different
techniques.

We calculated modulation for monoenergetic
fluxes of GCR which allows to study the energy
dependence of solar modulation effect. We have
shown that this is a powerful method for the
study of solar modulation of GCR. Using these
results one can easily calculate the modulation
for any kind of LIS. In particular, we discussed
how averaged energy losses, averaged time spent
by GCR inside the Heliosphere, modulation depth
depend on the initial particle’s energy. We have
shown that there is a linear scaling of the en-
ergy losses vs. time spent in the Heliosphere and
this scaling doesn’t depend on the modulation
strength.

In the present paper we have done calcula-
tions in the framework of a spherically-symmetric
steady state approximation of the Heliosphere.
Our calculation doesn’t include proton drift in
the heliospheric neutral sheet. The drift might
be important during cycles with gA < 0 when the
neutral sheet tilt angle is below 30° since protons
can use the neutral sheet as a short cut to the
Earth’s orbit (e.g. [25,26]). In order to take into
account the drift and consider more realistic mod-
els, our next steps will be towards a stochastic
simulation technique for a two- (and later three-)
dimensional model of the Heliosphere. Since the
method allows us to fix time spent by a particle
in the Heliosphere, it is natural to move towards
time-dependent models as well.
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