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It has been suggested recently that early sunspot numbers should be re-calibr

significantly corrected using the observed daily range of the geomagnetic de

(so-called rY values). The suggested ‘‘correction’’ method makes an a priori detr

numbers by roughly 30% goes far beyond the traditional estimates of obse

uncertainties of sunspots. Concentrating here on Zürich sunspot numbers

demonstrate that the rY values do not actually imply that the observed Rz valu

19th century are systematically underestimated. Rather, we find that the Rz num

fairly uniform after mid-19th century. The suggested ‘‘correction’’ is largely in

the detrending of the rY series, which enhances the rY-based sunspot activity in

century relative to later times. We also show that while the annually

declinations have a rough relation between sunspots and other related solar pa

this relation is strongly seasonally dependent and, therefore, not sufficiently ac

uniform to allow annually averaged rY values to be used as a very reliable prox

activity in early times.
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The evolution of solar activity during the last 1
is very well known, based on both direct
observations as well as on some independent
Sunspot numbers depict a fairly steady increase
amplitudes from the start of the 20th century un
in the mid-20th century, with a more variable
larger than average level thereafter. This evol
supported by studies based on proxies of solar
like geomagnetic activity and cosmogenic isoto
example, based on the geomagnetic aa index
derived (Lockwood et al., 1999) that the strengt
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model and the observed sunspot numbers (Solan
2000, 2002). The increasing centennial trend f
solar and geomagnetic activity is further suppo
studies using cosmogenic isotopes (Usoskin et a
Solanki et al., 2004).

Despite this consistency, some doubt was raise
centennial increase in geomagnetic activity. Intro
new index of geomagnetic activity, the so-cal
(inter-hour variability) index, Svalgaard et al.
claimed that there is no long-term increase du
20th century. However, it was shown soon th
that when the effect of the changing data s
method in the early century is taken into acco
IHV indices of all studied stations show a
increasing centennial trend (Mursula and Martin
The centennial increase was recently further verifi

ved.
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a novel Ah index which is a closer proxy than IHV to the
traditional K-based indices like Kp/Ap, and aa (Mursula
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and Martini, 2007a, b; Martini and Mursula, 2008)
The relative, Wolf or Zürich sunspot number (c

here) was introduced by Rudolf Wolf of Zürich O
tory in mid-19th century. Using the principle
‘‘primary’’ observer (for the hierarchy of observe
Waldmeier, 1961) Wolf aimed in having a homog
time series. The bulk of the Rz series in 1849–1
based on observations performed at the Zürich O
tory using almost the same technique. Accordin
values since 1849 are considered quite homogeneo
reliable.

Geomagnetic activity provides fairly reliable
data for roughly the same time interval. Although
concern exists about its long-term homogeneity
2005; Lockwood et al., 2008; Martini and Mursula
the aa index, sometimes extended by the Helsinki
start in 1844, verifies that the activity level in th
19th century was higher than at the turn of the ce
but lower than in late-20th century. Studies
cosmogenic isotopes in terrestrial archives and me
support these results (Usoskin et al., 2003,
However, in 1749–1849, prior to the regular obser
at the Zürich Observatory the sunspot observati
several gaps and the Rz indices were often inter
using various proxy data, in particular the daily r
the geomagnetic declination. Accordingly, the Rz

cannot be considered very reliable for the time
1849 (Usoskin and Mursula, 2003; Hathaway and
2004).

Moreover, the evolution of solar activity dur
19th century is supported by another, completel
pendent reconstruction of sunspot groups by Ho
Schatten (1998), forming a nearly 400-year rec
group sunspot numbers Rg . The virtues of Rg are
includes many more sunspot observations than Rz,
not include any proxy data (unlike Rz) and it inclu
basic information on observations (that are hidden
Rz series), thus allowing estimates of uncertaint
possible errors. It has been shown that the Rg s
more reliable and homogeneous than the Rz series
1849, but the two series mostly agree with each
since mid-19th century (Hoyt and Schatten, 1998;
1999). The two series disagree slightly on the heigh
8, 9 and 11, the Rz series giving somewhat
maximum amplitudes to these cycles. Also, th
solar cycle characteristics as obtained from Rg se
similar to Rz series (Hathaway et al., 2002).

Recently Svalgaard (2007) has re-activated the m
of using the daily range of the geomagnetic decl
(so-called rY parameter) as a proxy of sunspot nu
Extending a linear regression between annually av
rY values and sunspots established for the last 25 y
earlier times, he concluded that the declination r
sunspot numbers from the 1840s until the earl
century to be sizably re-calibrated and correct
creased). Taking into account the recent debate o
influence on climate, Svalgaard’s claim is obvious
significant and topical also for climate question
suggested ‘‘correction’’ of sunspot numbers by r
Rz
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was already routinely observed by photographic
that were also taken into account in Rg numbers.

In this paper we examine the method u
Svalgaard (2007) and demonstrate that the rY va
not indicate that the observed Rz values are
estimated. (In this paper we concentrate on
numbers, leaving the analysis of Rg values for a s
study.) Rather, the results obtained by Svalgaard
are largely induced by the arbitrary and err
detrending of the rY series, which enhances the s
activity based on the rY series in the 19th century
to more recent times. We also show that the r
between annually averaged rY values and suns
greatly seasonally dependent, so also inherently in
geneous. Therefore, claims of need for a sig
revision of sunspot activity in the 19th century
founded.
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Svalgaard (2007) (to be called here S2007) use
ranges of declination from several stations to cons
combined rY series in 1841–2006. The daily varia
declination is caused by the north–south directed s
of the so-called Sq current system which consis
western equatorward part and an eastern return
in either hemisphere. S2007 normalized all other s
to the mid-latitude Niemegk (NGK) station but
mention in detail, e.g., which stations were includ
how the early years were joined with the more rec
complete data. Fig. 1 depicts the annual averages o
combined rY values for 1841–2005. The rY valu
clearly with solar cycle with minimum values o
30–35 in solar minima and maxima of about 45
solar maxima.

In addition to the solar cycle variation, some te
for a longer-term trend is seen in Fig. 1 (see also F
in S2007). S2007 noted that there is an overall t
about 0.0245 nT/year in the (three-year) rY values
solar minima, amounting to a 9.8% increase
during the depicted time interval. This trend was
ted to be due to a possible increase in iono
conductivity due to a 10% decrease in the inten
the internal geomagnetic field. We have includ
trend in Fig. 1.

Note, however, that the long-term evolution
either at solar minima or more generally, is fa
uniform and that the sunspots depict a quite simila
term behavior as rY values. This is also true for s
levels and rY values during sunspot minima. Fig. 2
the similar relative variation during the first few m
in these two parameters. In particular, there
uniformly increasing trend seen around these m
Even after the time depicted in Fig. 2, the tre
sunspot minima are roughly similar, with an
increase seen in both parameters during the 20th c
Note also that the increasing activity at sunspot m



follows the increase of cycle amplitudes and is mainly due
to the cycle overlap effect (see, e.g., Hathaway et al., 2002).
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Fig. 2. (a) Yearly sunspot numbers (Rz) and (b) the (original) rY values in minimum years in 1841–1900.
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Fig. 1. The original (solid line with pluses) and detrended (dashed line with squares) yearly rY values of Svalgaard (2007). Trend formed by three

minimum years per minimum (marked by bold pluses) is also given (solid bold line). Even solar cycles are denoted by number.
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Accordingly, the long-term rY trend at solar m
not uniform and may well be mainly due to the
sunspot activity. Note also that the suggested effe
changing geomagnetic intensity upon the ion
ionization is not quantitatively verified. Moreover
effect may be theoretically motivated at high lati
the auroral zone where particle ionization is im
but it is quite improbable at low and mid-latitude
UV controls the dayside ionization and the Sq
intensity. Therefore, it is unmotivated and prema
priori detrend the rY series by removing the trend
by the rY values at solar minima.

The effect of removing the trend is to raise the
rY values in the mid-19th century and decrease
the late 20th century (see Fig. 1). This is problema
the main argument in S2007 is that sunspot activi
mid-19th century is too low. Accordingly, this argu
based on circular evidence.

Fig. 3 presents the scatterplot and correlation
annual sunspot numbers and the (not detrended
averages of the combined rY values in 1841–2005
best fit line Rz ¼ 5:698 � rY � 180:803 ðcc ¼ 0:9
have used this correlation to depict the observed
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parameters are very similar. We have also correl
detrended rY values with sunspots and used the
tive best fit line to depict them in Fig. 4b. While i
Rz makes the higher maximum in SC 9 and 11 a
higher in SC 12 and 13, in Fig. 4b rY has nearly re
in SC 9 and 11, and exceeds it even more during S
and 13. Similar systematic changes are seen in
minima, and opposite changes during the mor
cycles. These notes underline the problematic ef
priori removing the trend from rY values which ar
raises the rY-based sunspot activity in mid-19th

Figs. 5a and b depict the differences between
rY-based sunspot numbers before and after det
respectively. Large positive differences (e.g., bey
occur mostly in the beginning of the interval in Fig
at the end of interval in Fig. 5b, again reflecting t
of detrending to lower the values in mid-19th
and raise them in the late 20th century. Note a
while before detrending the differences oscillat
randomly around zero, after detrending they ten
below zero in late-19th century and above zero
20th century. Also, after detrending, the differenc
evidence for a step-like behavior (to be discussed



3. Extending recent Rz–rY correlation to earlier times
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Fig. 3. The scatterplot of yearly Rz values vs. the (original) rY values in 1841–2006. Best fit (solid line) and 95% confidence limit lines (dashed lines) are

included.
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S2007 argues (although does not show quantit
that the correlation between annual sunspots
values depends on the time interval studied, claim
for an inconstant calibration of sunspots. Therefore
uses the sunspots of the more recent times 1981–2
find the most reliable correlation between sunsp
rY. (This is the period of the international sunspo
constructed at SIDC, Brussels, as a statistical ave
several observers rather than using a primary o
method of Rz.) We have depicted the two paramet
their correlation in Fig. 6. As noted above, cont
S2007, we do not detrend the rY values prior to corr
them with sunspots. Despite this, our correla
equally good as in S2007 ðcc ¼ 0:9836Þ and the
line Rz ¼ 5:7864 � rY � 187:3417 is only slightly d
from the one found there. Note also that the best
for the whole time interval and for the recen
are fairly similar, the differences being within th
mated error.

S2007 then extended the correlation found fo
recent years to obtain an rY-based estimate of s
activity series since 1841. S2007 found that while
Rz agree well since 1940s Rz generally falls below
reconstruction before that. This was true for al
cycles in the late 19th century and at the turn of ce
(SC 10–14), except for SC 9. The differences b
rY-based and observed Wolf sunspot numbers wer
to be occasionally very large, up to about 40%. W
included the early part of Figure 7 of S2007 in Fig.
in particular how similar the cycle amplitudes an
relative differences are in Fig. 4b and in Fig. 7, sug
that the differences between rY-based and Rz s
cycle amplitudes in the 19th century are indeed
due to detrending.

We have depicted in Fig. 8 the rY-based su
during the most critical time interval using the corr
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Fig. 6. It is seen in Fig. 8 that out of the three cycles
and 13) where S2007 found the largest diff
between rY and Rz, two (SC 10 and 12) are wit
error based on correlation for recent years. For SC
gives a maximum which is significantly (in terms
error) above Rz. On the other hand, in SC 9
maximum is significantly higher than that based
Thus, one cannot conclude that rY would imply a
ficantly and systematically higher level of sunspot
in the 19th century. This suggests that the claim in
of large, systematic differences between rY and
seriously affected by the arbitrary detrending pro
Instead, our results support the overall homogenei
values during the studied time interval.

In order to ‘‘correct’’ for the differences found b
rY-based and observed sunspot numbers, S2007
lated rY and sunspots for each cycle separately (usi
intercepts). Thereby S2007 introduced cycle dep
‘‘correction factors’’ which were applied to the ob
sunspot numbers so as to optimally fit them to rY
dingly, the ‘‘corrected’’ sunspots attained the level
detrended rY during each cycle separately. So, e
weak cycles 10 and 12 were naturally raised consid
making S2007 to conclude that sunspot level in th
19th century must be raised to roughly the same
the recent cycles.

The best fit slopes, i.e. the ‘‘correction factors’’ f
cycle, were found to vary from 0.905 (SC 19) to 1.4
13) for Rz and from 0.961 (SC 22) to as large as 1.580
for Rg. (Note that the suggested error of 58% for S
against three independent estimates by Wolf, by th
Greenwich Observatory and by Spoerer who agree
9% on the number of sunspot groups for this
Moreover, the coefficients were found to group in th
with different levels, the first set for SC 10–13 w
average level of about 1.3, the second at about 1.15



14–17 and the third of about 1 for the recent cycles. These
steps in the ‘‘correction factors’’ were connected in S2007
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in the ‘‘correction factors’’. It is very indicative that the
steps depicted in Fig. 5b are located at the same times and
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Fig. 4. The yearly Rz (solid line) and rY-based sunspot values (dashed line) in 1841–2006 (a) using original rY values; (b) using detrended rY values. The

corresponding overall best fit trends are also included. Even solar cycles are denoted by number.
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to the changes in 1893 (from Wolf to Wolfer) and
(from Brunner to Waldmeier) of the primary obser

However, as seen in Fig. 5, while the dif
between the Rz and rY-based sunspots are os
around zero rather randomly in Fig. 5a, the detre
rY values tends to form similar stepping as noted i
945
f Rz.
ces

ting
g of
007

have roughly the same size as in the ‘‘correction
So, our conclusion is that the differences betwee
and rY-based sunspots are mostly produced by de
the rY values. As noted in S2007 with some em
ment, the same steps with even larger relative dif
were found for the group sunspot numbers w



independent of the changes in primary observers. This
note can now be better understood.

and
s rea
onth
e N
bin
NG

h, Ju
ondi

een t
pica

milar

March rY values range from 30 to 70 and June values from
45 to 90 for the same Rz values. Accordingly, the range of

to the
f the rY

of the
in the

cember
quator-
k. The

er: the
l time,

and rY
es are

er, Rz ¼

d Rz ¼

rdingly,

ARTICLE IN PRESS

1840 1860 1880 1900 1920 1940 1960 1980 2000
−40

−30

−20

−10

0

10

20

30

40

1840 1860 1880 1900 1920 1940 1960 1980 2000
−40

−30

−20

−10

0

10

20

30

40

Fig. 5. Difference between the yearly Rz and rY-based sunspot values in 1841–2006 (a) using original rY values; (b) using detrended rY values.
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4. Seasonal Rz–rY correlation

We have also studied the correlation between Rz

in more detail. In order to find how the rY value
vary, we have plotted in Fig. 9 the scatterplot of m
Rz values and monthly rY values calculated for th
station in 1890–2005. (Note that the rY values com
from several stations in S2007 were normalized to
We have taken three months of each year (Marc
and December) and plotted the data points corresp
to these three months using different symbols.

Fig. 9 depicts large systematic differences betw
three months. The rY values in December range ty
from 15 to 40 for Rz varying from 0 to 200. Si
rY
lly
ly

GK
ed
K.)
ne
ng

he
lly
ly,

rY values is greatly dependent on season, contrary
view expressed in S2007. This seasonal variation o
range reflects the annual change of the location
Sq current system, as observed at one fixed station
northern hemisphere. The reduced rY values in De
are due to fact that when the Sq system moves e
wards, the station sees the Sq system to shrin
opposite effect takes place in the local Summ
Sq currents are closer, stronger and wider in loca
leading to a larger rY.

Moreover, the correlation between monthly Rz

values depends on the season. The best fit lin
Rz ¼ 5:811 � rY � 93:527 (cc ¼ 0:623) for Decemb
4:344 � rY � 152:329 ðcc ¼ 0:890Þ for March an
4:335 � rY � 213:014 ðcc ¼ 0:925Þ for June. Acco



the sensitivity (inverse of the slope of the regression line)
of rY to solar activity is roughly similar in March and June

itivit

Winter is natural because the focus of the Sq current
system is quite far from the station and the variations in
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but clearly smaller in December. The smaller sens
 y in Sq intensity are only weakly reflected there.



We have also depicted in Fig. 9 the two best fit lines
obtained above between Rz and rY using annual averages.

Fig.

Note that, interestingly, the sensitivity of rY on Rz in
December is quite similar to (only slightly weaker than)

would
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(They are hardly distinguishable from each other in
 9.) the sensitivity using annual averages. Actually, one



expect that the sensitivity using annual averages would be
between Winter Summer sensitivities. However, the
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December fit is considerably worse than the Sum
including data points far outside the best fit l
Fig. 9), especially for large Rz. These points dem
the nearly complete insensitivity of Winter rY (at
solar activity, and strongly decrease the sensi
annual averages below that for Summer (or Sprin
Therefore, the correlation between Rz and rY usin
averages is strongly contaminated by the annual m
the Sq current system, contrary to what was ass
S2007. Also, this shows that the correlation
annual averages of Rz and rY is not sufficiently co
or accurate for rY to be used as a very reliable pro
We also note that using all monthly values would
best fit line whose slope would be very small, i
higher sensitivity than any of the individual mon
clearly demonstrates the arbitrariness of the su
method.

Note also that the fact that the correlation bet
and rY varies over the year also indicates t
correlation of annual values is dependent on the d
tion of solar activity over the year. This causes e
scatter in the Rz–rY relation. This effect is par
important during years of weak or rapidly changi
activity when the relative annual variation of
activity can be much larger than during highl
years. Accordingly, while the correlation between
Rz and rY values is driven by the most highly acti
and gives an average relation for weak and high
years, there is an enhanced level of scatter aro
average Rz–rY relation during weak sunspo
Actually, the success of extending the Rz–rY rela
recent years to the early years (Fig. 4a) is quite
and lends support for fair homogeneity of the Rz

5. Discussion and conclusions
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We have studied here a recent claim (Svalgaar
that the early measurements of the daily range
geomagnetic declination implies that sunspot ac
significantly underestimated in the mid- to la
century. We have noted that detrending the rY da
solar minimum years is largely responsible
suggested higher level of sunspot activity in t
century based on the rY values. Also, there is no
trend in rY values at solar minima. Rather, thes
follow the long-term trend and the cycle-by-cyc
tion of sunspot minima, suggesting that the de
geomagnetic field intensity has a minor effect
trend, contrary to the suggestion in S2007.

We have also noted that while, without detrend
residuals between observed and rY-based sunspo
late rather randomly round zero, after detrend
seem to develop a step-like behavior with an
below zero in the late 19th century, around zero
20th century and above zero in the late 20th
A similar stepping was found in S2007 in th
dependent ‘‘correction factors’’ introduced to r
observed sunspots to the rY-based level. This stepp
fit,
see
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Observatory. Note, however, that this explanati
not apply to Rg numbers where a similar stepping
found in the similar ‘‘correction factors’’.

When extending the correlation between the
averages of international sunspot numbers and r
(without prior detrending) in 1981–2006 to the m
late 19th century, we find a good correlation
observed Rz values and the rY-based sunspot n
with most cycles agreeing with each other wit
confidence limits (one cycle was higher in Rz an
rY). Regression parameters between rY and sun
recent years are almost identical to those for th
time interval (1841–2006). These results give
evidence for the homogeneity of the Rz series
time interval studied. Anyway, the observed Rz num
mid-19th century are not systematically lower t
rY-based estimates yield.

We have also studied here the long-term dep
of rY values on solar activity using monthly avera
have shown that sensitivity of rY on sunspot
greatly seasonally, following the seasonal motio
Sq current system. At mid-latitudes, the Wint
sensitivity is much weaker due to the enhanced
to the Sq focus. So, contrary to the assumption i
the annual range of the rY values is dominat
seasonal variation, which causes enhanced sc
sunspot–rY relation especially for weak solar
times. Accordingly, the relation between annua
aged Rz and rY values is rather inaccurate, inhomo
and even slightly nonlinear, excluding a very
extrapolation over long time intervals. Thus, atte
‘‘correct’’ one by another using a linear relation are

Concluding, while the daily declination range
used to obtain a rough relation between sunsp
other related solar parameters (like F10.7, UV flu
their mutual relation is strongly seasonally depend
not sufficiently accurate, uniform or linear for
averaged rY values to be used as a very reliable p
e.g., sunspots in early times. So, an accurate
number calibration by the ‘‘magnetic needl
not make sense. Moreover, the Rz values of
19th century are in accordance with the sunsp
predicted by their recent relation with rY, indicat
be fairly uniform over this interval. On the other
priori detrending of rY values using solar minimu
is questionable and artificially enhances the r
sunspot level in the 19th century.

Appendix A. Supplementary data

Supplementary data associated with this
can be found in the online vesion at doi:10.101
2008.04.017.
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