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We report the observation of new properties of primary iron (Fe) cosmic rays in the rigidity range
2.65 GV to 3.0 TV with 0.62 × 106 iron nuclei collected by the Alpha Magnetic Spectrometer experiment
on the International Space Station. Above 80.5 GV the rigidity dependence of the cosmic ray Fe flux is
identical to the rigidity dependence of the primary cosmic ray He, C, and O fluxes, with the Fe=O flux ratio
being constant at 0.155� 0.006. This shows that unexpectedly Fe and He, C, and O belong to the same
class of primary cosmic rays which is different from the primary cosmic rays Ne, Mg, and Si class.

DOI: 10.1103/PhysRevLett.126.041104

Primary iron cosmic rays are the most abundant heavy
nuclei beyond silicon. They are thought to be mostly
produced and accelerated in astrophysical sources. Iron
interaction cross sections with the interstellar medium (p,
He) are significantly larger than those of lighter nuclei (He,
C, O, Ne, Mg, and Si). Therefore, iron nuclei interact much

more with the interstellar medium during propagation.
Precise knowledge of the iron spectrum in the GV–TV
rigidity region provides important information on the
origin, acceleration, and propagation processes of cosmic
rays in the Galaxy [1]. Previously, the precision measure-
ments of the primary cosmic ray He, C, and O fluxes
and Ne, Mg, and Si fluxes with the Alpha Magnetic
Spectrometer experiment (AMS) have been reported
[2,3]. These measurements revealed an identical rigidity
dependence of the He, C, and O fluxes above 60 GV and
their deviation from a single power law (hardening) above
∼200 GV. The AMS results also revealed unexpected
differences in the rigidity dependence of the Ne, Mg,
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and Si fluxes compared to the He, C, and O fluxes. To date,
iron nuclei (Z ¼ 26) are the highest charge cosmic rays
measured by AMS. The rigidity dependence of the iron flux
compared with that of lower-charge primary cosmic rays
provides new insights into the origin and propagation of
cosmic rays [4,5].
Over the last 30 years there have been many measure-

ments of the Fe flux in kinetic energy per nucleon [6–17].
Typically these measurements have errors larger than 20%
at 50 GeV=n (∼100 GV in rigidity). There are no mea-
surements of Fe flux in rigidity.
In this Letter we report the precise measurement of the

Fe flux in the rigidity range from 2.65 GV to 3.0 TV based
on 0.62 × 106 iron nuclei collected by AMS during the first
8.5 years (May 19, 2011 to October 30, 2019) of operation
aboard the International Space Station (ISS). The total flux
error is 4.8% at 100 GV.
Detector.—The layout and description of the AMS

detector are presented in Ref. [18]. The key elements used
in this measurement are the permanent magnet [19], the
nine layers silicon tracker [20], L1-L9, and the four planes
of time of flight TOF scintillation counters [21]. AMS also
contains a transition radiation detector, a ring imaging
Čerenkov detector, an electromagnetic calorimeter, and an
array of 16 anticoincidence counters. Further details on the
detector, trigger, and Monte Carlo (MC) simulation are
contained in Refs. [22–24] and in the Supplemental
Material [25].
Event selection.— In the first 8.5 yr AMS has

collected 1.50 × 1011 cosmic ray events. Iron events
are required to be downward going and to have a recon-
structed track in the inner tracker which passes through L1.
In the highest rigidity region, R ≥ 1.2 TV, the track is
also required to pass through L9. Charge measurements on
L1, the inner tracker, the upper TOF, and, for R > 1.2 TV,
the lower TOF, and L9 are required to be compatible with
charge Z ¼ 26, namely, 23.2<ZL1<27.6, 24.7<ZUTOF <
27.6;25.5<ZInnerTracker < 26.5, ZLTOF>24.7, 24.6<ZL9 <
28.8. Details of the event selection are contained in
Refs. [23,26–29] and in the Supplemental Material [25].
The event selection yields purities of > 97% over the

entire rigidity range. The impurities have two sources. The
main source is a residual background from Mn nuclei due
to the finite AMS charge resolution. It has been estimated
as a function of rigidity by selecting events with tight
charge cuts on L1 and upper and lower TOF and found to
be less than 3% over the entire rigidity range, see Fig. S2 of
the Supplemental Material [25]. The second source is the
residual background from the interactions of heavy nuclei
such as Co and Ni in the AMS materials above L2. It is
negligible, < 0.3%, over the entire rigidity range, as shown
in Fig. S3 of the Supplemental Material [25].
After background subtraction we obtain 0.62 × 106 iron

nuclei. The uncertainty due to background subtraction is
< 0.7% independent of rigidity. It was estimated by
varying the purity of the Fe sample from 95% to 99%

and also by taking into account the statistical and
systematic uncertainties in the template fit, see Fig. S3
of the Supplemental Material [25].
Data analysis.—The isotropic flux Φi in the ith rigidity

bin ðRi; Ri þ ΔRiÞ is given by

Φi ¼
Ni

AiϵiTiΔRi
; ð1Þ

where Ni is the number of events corrected for bin-to-bin
migration, Ai is the effective acceptance including geo-
metric acceptance, event reconstruction and selection
efficiencies, and inelastic interactions of nuclei in the
AMS materials, as described below, ϵi is the trigger
efficiency, and Ti is the collection time. In this Letter
the flux was measured in 49 bins from 2.65 GV to 3.0 TV,
with bin widths chosen according to the rigidity resolution
and available statistics.
The bin-to-bin migration of events was corrected using

the unfolding procedure described in Ref. [26]. These
corrections, ðNi − ℵiÞ=ℵi where ℵi is the number of
observed events in bin i, are þ33% at 3 GV decreasing
smoothly to þ11% at 10 GV, þ2% at 80 GV, þ1% at
150 GV, and −2% at 3 TV.
Extensive studies were made of the systematic errors.

These errors include the uncertainties in the background
evaluation discussed above, the trigger efficiency, the
geomagnetic cutoff factor, the acceptance calculation, the
rigidity resolution function, and the absolute rigidity scale.
The systematic error on the fluxes associated with the

trigger efficiency measurement is < 1% over the entire
rigidity range.
The geomagnetic cutoff factor was varied from

1.0 to 1.4, resulting in a negligible systematic uncertainty
(<0.1%) in the rigidity range below 30 GV.
The effective acceptances Ai were calculated using MC

simulation and corrected for small differences between the
data and simulated events related to (a) event reconstruction
and selection, namely in the efficiencies of velocity vector
determination, track finding, charge determination, and
tracker quality cuts and (b) the details of inelastic inter-
actions of nuclei in the AMS materials. The total correc-
tions to the effective acceptance from the differences
between data and MC simulation were found to be <5%
over the entire rigidity range. The systematic error on the
flux associated with the reconstruction and selection is
<1% over the entire rigidity range.
The material traversed by nuclei from the top of AMS to

L9 is composed primarily of carbon and aluminum.
The survival probabilities of Fe nuclei due to interactions
in the materials were measured using cosmic ray data
collected by AMS as described in Ref. [30]. The simulation
of nuclear interactions has been validated with data using
all AMS measured nuclear charge changing cross sections
(Fe → He...Mnþ X). Figure S4a of the Supplemental
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Material [25] shows three examples Fe → Cr þ X,
Fe → Siþ X, and Fe → Oþ X; Fig. S4b shows the com-
parison between the simulated and measured Fe survival
probabilities between L1 and L2 in TRD and upper
TOF; Fig. S5 shows the nuclei inelastic cross section of
He, B, C, N, O, Ne, Mg, Si, S, and Fe on a C target
measured by AMS at 15 GV rigidity as a function of nuclei
charge radius [31]. The systematic error due to uncertain-
ties in the evaluation of the inelastic cross section is < 4%
up to 100 GV. Above 100 GV, the small rigidity depend-
ence of the cross section from the Glauber-Gribov model
[24] was treated as an uncertainty and added in quadrature
to the uncertainties from the measured interaction proba-
bilities [30]. Therefore, the corresponding systematic errors
on the Fe flux is < 4% up to 100 GVand rises smoothly to
4.5% at 3 TV.
The rigidity resolution function for Fe has a pronounced

Gaussian core characterized by width σ and non-Gaussian
tails more than 2.5σ away from the center [23]. Figure S6 of
Supplemental Material [25] shows the complete AMS
rigidity resolution function as smearing matrices for the
L1-L8 and L1-L9 configurations. The resolution function
has been verified with the procedures described in detail in
Ref. [27]. The systematic error on the flux due to the
rigidity resolution function was obtained by repeating
the unfolding procedure while varying the width of the
Gaussian core of the resolution function by 5% and by
independently varying the amplitude of the non-Gaussian
tails by 10% [23]. The resulting systematic error on the flux
is less than 1% below 300 GV and smoothly increases to
2.5% at 3 TV.
There are two contributions to the systematic uncertainty

on the rigidity scale [26]. The first is due to residual tracker
misalignment. This error was estimated by comparing the
E=p ratio for electrons and positrons, where E is the energy
measured with the ECAL and p is the momentum mea-
sured with the tracker. It was found to be 1=30 TV−1 [32].
The second systematic error on the rigidity scale arises
from the magnetic field map measurement and its temper-
ature corrections [26]. The error on the Fe flux due to
uncertainty on the rigidity scale is < 1% up to 300 GVand
increases smoothly to 6% at 3 TV.
Most importantly, several independent analyses were

performed on the same data sample by different study
groups. The results of those analyses are consistent with
this Letter.
Results.—The measured Fe flux including statistical and

systematic errors is reported in Table SI of Supplemental
Material [25] as a function of the rigidity at the top of the
AMS detector. Figure 1(a) shows the Fe flux as a function
of rigidity R̃ with the total errors, the sum in quadrature of
statistical and systematic errors. In the figure the points are
placed along the abscissa at R̃ calculated for a flux ∝ R−2.7

[33]. For comparison, Fig. 1(a) also shows our latest results
on the oxygen flux from Refs. [2,34]. To examine the

rigidity dependence of the Fe flux, the variation of the flux
spectral indices with rigidity was obtained in a model
independent way from

γ ¼ d½logðΦÞ�=d½logðRÞ� ð2Þ

over nonoverlapping rigidity intervals bounded by 7.09,
12.0, 16.6, 28.8, 45.1, 80.5, 175.0, and 3000.0 GV. The
results are presented in Fig. 1(b) together with the spectral
index of the oxygen flux from Ref. [34]. As seen from
Fig. 1, above 80.5 GV the iron flux and spectral index
follow the oxygen flux and spectral index, with the iron
flux behavior being consistent with the observed hardening
of the oxygen flux.
Figure 2 shows the AMS iron flux as a function of

kinetic energy per nucleon EK together with earlier
measurements [6,7,9–16]. Data from other experiments
have been extracted using Ref. [35].
To compare the rigidity dependence of the Fe flux with

that of He, C, and O primary cosmic ray fluxes, which have
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FIG. 1. (a) The AMS iron flux (red dots) and oxygen flux
(violet triangles) multiplied by R̃2.7 with total errors as a function
of rigidity. (b) The AMS iron flux spectral index (red dots) and
oxygen flux spectral index (violet triangles) dependence on
rigidity. As seen, above 80.5 GV the rigidity dependence of
the iron flux and spectral index follow the rigidity dependence of
the oxygen flux and spectral index.
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identical rigidity dependence above 60 GV [2,34], the ratio
of the iron flux to the oxygen flux [34], Fe=O,
was computed and is reported in Table SII of the
Supplemental Material [25]. To compare the AMS result
with previous measurements, the Fe=O ratio was converted
from rigidity to kinetic energy per nucleon using the
procedure described in Ref. [27]. Figure S7 of the
Supplemental Material [25] shows the AMS Fe=O flux
ratio as a function of kinetic energy per nucleon together
with earlier measurements [6,7,11,13,15,16]. As seen, the
AMS result provides an accurate functional energy depend-
ence of the Fe=O flux ratio.
Figure 3(a) shows the AMS Fe=O ratio as a function of

rigidity with total errors together with a constant value fit
above 80.5 GV. The fit yields Fe=O ¼ 0.155� 0.006 with
χ2=d:o:f: ¼ 8=11. This, together with Fig. 1, shows that
Fe belongs to the same class of primary cosmic rays as
He, C, and O.
Figure 3(b) shows the comparison of the Fe=O flux ratio

with the cosmic ray propagation model GALPROP [36]
prediction based on data available before AMS and with the
latest GALPROP and HELMOD model [37] prediction
based on published AMS data without including data in this
Letter. As seen from Fig. 3(b), neither of these two models
describes our data.
Cosmic ray nuclei fragment during their propagation in

the Galaxy. Because of their different inelastic cross
sections with the interstellar media, the fraction of nuclei
which fragments at a given rigidity is different for iron and
oxygen [38,39]. This, together with the propagation
time (or Galactic leakage rate) rigidity dependence may
significantly affect the measured Fe=O flux ratio [37].
Historically, there are several simple models describing the

propagation of primary cosmic ray nuclei through the
interstellar medium such as the “slab” and the “leaky-
box” models. In the slab model cosmic rays of a given
rigidity traverse an equal amount of matter. In the leaky-
box model the amount of matter traversed by cosmic rays of
a given rigidity is distributed exponentially [40].
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FIG. 3. The AMS Fe=O ratio as a function of rigidity with total
errors and with (a) red band (1σ) indicating the constant value fit
(Fe=O ¼ 0.155� 0.006 with χ2=d:o:f: ¼ 8=11) above 80.5 GV;
b) dashed green curve, showing the prediction of the Fe=O ratio
by the GALPROP model [36] based on data available before
AMS and dashed blue curve showing the prediction of the Fe=O
ratio by the latest GALPROP and HELMODmodel [37] based on
published AMS data without including data in this Letter; and
(c) blue curve, showing the fit results with Eq. (3), and green
band, showing the Fe=O flux ratio at the source, i.e., fit results of
Eq. (3) with λ ¼ 0.
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To assess the overall Fe=O flux ratio rigidity dependence
at the source, before propagation, we have fitted it over the
entire rigidity range using the slab model, e−λSðσ̃A−σ̃A0 Þ,
describing the propagation of primary nuclei through the
interstellar medium [40] together with a source term
kðR=192 GVÞΔ:

ΦA

ΦA0
¼ k

�
R

192 GV

�
Δ
e−λSðσ̃A−σ̃A0 Þ; ð3Þ

whereΦA=ΦA0 is the flux ratio of primary nuclei A and A0, k
is a normalization factor,Δ is the flux ratio spectral index at
the source,

λS ¼
(
λðR=192 GVÞ−0.38�0.02 R ≤ 192 GV

λðR=192 GVÞ−0.24�0.03 R > 192 GV
ð4Þ

is a mean material grammage (g cm−2) with rigidity
dependence from Refs. [4,34,41] and λ is the grammage
at R ¼ 192 GV,

σ̃A ¼ 1 − f
mp

σAþp þ f
mHe

σAþHe ð5Þ

is the mass averaged cross section of a nucleus A, f ¼
0.28� 0.02 is the helium mass fraction in the interstellar
medium [42], mp and mHe are the proton and 4He masses,
and σAþp and σAþHe are the corresponding nuclei inelastic
cross sections with protons and helium in the interstellar
medium, respectively, evaluated using measurements from
Refs. [39,43].
The fit parameters are k, Δ, and λ. The fit yields

k ¼ 0.203� 0.008, Δ ¼ −0.002� 0.017, and λ ¼ 1.04�
0.11 g cm−2 with χ2=d:o:f: ¼ 22=43. The Fe=O flux ratio
fit result is shown in Fig. 3(c). As seen, the Δ parameter is
consistent with zero, which implies that in this model the
Fe=O flux ratio at the source is constant over the entire
rigidity range, as illustrated by the green band in Fig. 3(c).
As seen, the model of Eq. (3) provides a good description
of the Fe=O flux ratio. For completeness, we have also
studied Eq. (3) with primary flux ratios Fe=He, He=O, and
Fe=Si. The results are reported in the Supplemental
Material [25] and shown in Table SA and Fig. S8 of the
Supplemental Material [25]. As seen, the model of Eq. (3)
also provides a good description of the Fe=He, He=O, and
Fe=Si flux ratios. As seen in Fig. S8 of Supplemental
Material [25], in the model the Fe=O, Fe=He, and He=O
flux ratios at the source are constant over the entire rigidity
range, however, the Fe=Si flux ratio at the source is not
constant (at the 3σ level). The results of this model are
consistent with the observation that He, O, and Fe belong to
one class of primary cosmic rays and Si belongs to a
different class.

We have also fitted the AMS Fe=O and Fe=Si flux ratios
using the leaky box model [40]. The details are discussed in
the Supplemental Material [25] and shown in Fig. S9. As
seen, the leaky box model fails to describe the AMS results.
Most importantly, independent of any model [36,37,44],

the measured rigidity dependence of Fe above 80.5 GV
follows the rigidity dependence of O, see Fig. 1(a) and
Fig. 3(a). Therefore as shown in Fig. 4, unexpectedly Fe
belongs to the He, C, and O class of primary cosmic rays
[2,34], which is different from the rigidity dependence of
Ne, Mg, and Si [3].
In conclusion, we have presented the precision meas-

urement of the Fe flux as a function of rigidity from
2.65 GV to 3.0 TV, with detailed studies of the systematic
errors. Above 80.5 GV the rigidity dependence of the
cosmic ray Fe flux is identical to the rigidity dependence of
the primary cosmic ray He, C, and O class, which is
different from the rigidity dependence of primary cosmic
rays Ne, Mg, and Si class. In particular, above 80.5 GV the
Fe=O ratio is well described by a constant value of
0.155� 0.006. These are new and unexpected properties
of primary iron cosmic rays.
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