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31INFN Sezione di Milano–Bicocca, 20126 Milano, Italy
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We present the precision measurement of 2824 daily helium fluxes in cosmic rays from May 20, 2011 to
October 29, 2019 in the rigidity interval from 1.71 to 100 GV based on 7.6 × 108 helium nuclei collected
with the Alpha Magnetic Spectrometer (AMS) aboard the International Space Station. The helium flux and
the helium to proton flux ratio exhibit variations on multiple timescales. In nearly all the time intervals from
2014 to 2018, we observed recurrent helium flux variations with a period of 27 days. Shorter periods of
9 days and 13.5 days are observed in 2016. The strength of all three periodicities changes with time and
rigidity. In the entire time period, we found that below ∼7 GV the helium flux exhibits larger time
variations than the proton flux, and above ∼7 GV the helium to proton flux ratio is time independent.
Remarkably, below 2.4 GV a hysteresis between the helium to proton flux ratio and the helium flux was
observed at greater than the 7σ level. This shows that at low rigidity the modulation of the helium to proton
flux ratio is different before and after the solar maximum in 2014.

DOI: 10.1103/PhysRevLett.128.231102

The temporal evolution of the interplanetary space
environment causes cosmic-ray intensity variations. This
is particularly visible at rigidities below 100 GV. These
variations correlate with solar activity at different

timescales [1,2]. The most significant long-term variation
is the 11-yr solar cycle [3,4]. Shorter-scale variations can be
either recurrent or nonrecurrent. The nonrecurrent varia-
tions are mainly due to the interactions of cosmic rays with
strong transient disturbances in the interplanetary magnetic
field, such as shock waves generated by interplanetary
coronal mass ejections, especially during solar maxima,
that can last from days to weeks [5,6]. Recurrent variations
with a period of 27 days, corresponding to the synodic solar
rotation, and at multiples of that frequency (e.g., periods of
13.5 and 9 days) are related to the passage of corotating
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interaction regions originating from one or more coronal
holes of the Sun [7–15], as first observed in 1938 [16].
Neutron monitor studies on the estimated rigidity depend-
ence in periodicities, for example, in Ref. [12], generally
concluded that the power of the periodicity decreases with
increasing rigidity. This formed the paradigm over the
Alpha Magnetic Spectrometer (AMS) rigidity range (1.71–
100 GV) that the strength of the 27-day (and 13.5- and 9-
day) periodicities steadily decreases with increasing
rigidity of cosmic rays, differently in solar maximum
and minimum [17]. However, recent AMS results on
periodicities in the proton daily fluxes [18] do not support
that the strength of the periodicities would always decrease
with increasing rigidity.
Cosmic-ray transport in the heliosphere is rigidity

dependent. Hence, the time variation of different particle
spectra (p, He, etc.) evaluated at the same rigidity are
expected to exhibit a similar behavior. However, according
to models based on the Parker equation [1], the time
dependence of distinct nuclei fluxes evaluated at the same
rigidity might differ because of (a) differences in the flux
rigidity dependence outside the heliosphere, (b) differences
in velocity because of distinct mass-to-charge ratio [19],
and (c) solar wind turbulence and other interplanetary
parameters.
Previously, AMS has reported the time dependence of

proton and helium fluxes on the timescale of Bartels
rotations (BR, 27 days). A significant long-term time
dependence was observed in the p/He flux ratio at rigidities
below 3 GV [20].
In the past, many experiments measured the time

variation of proton and helium fluxes [21]. In this Letter,
we present the daily time evolution of the helium flux from
1.71 to 100 GV. The measurement is based on 7.6 × 108

helium nuclei collected by AMS during the first 8.5 yr
(May 20, 2011 to October 29, 2019, a total of 2824 days or
114 BRs) of operation aboard the International Space
Station. For the first time, daily helium and proton fluxes
are simultaneously measured from 1.71 to 100 GV. This is
also the first continuous daily measurement of the rigidity
dependence of 9-, 13.5-, and 27-day periodicities in the
helium fluxes over an extended period of time and a broad
range of rigidities.
Detector.—The layout and description of the AMS

detector are presented in Refs. [22,23] and shown in
Fig. S1 in Supplemental Material [24]. The key elements
used in this measurement are the permanent magnet [25],
the silicon tracker [26–28], and the four planes of time of
flight scintillation counters [29]. Further information on the
AMS layout, performance, trigger, and the Monte Carlo
(MC) simulation [30,31] is detailed in Supplemental
Material [24].
Event selection.—AMS has collected 1.5 × 1011 cosmic-

ray events fromMay 20, 2011 to October 29, 2019. Helium
events are required to be downward going and to have a

reconstructed track in the inner tracker. See Fig. S2 in
Supplemental Material [24] for a reconstructed helium
event. Details of the event selection and backgrounds are
contained in Refs. [20,32–36] and in Supplemental
Material [24]. After selection, the event sample contains
7.6 × 108 helium nuclei.
Data analysis.—The daily isotropic flux Φj

i in the ith
rigidity bin ðRi; Ri þ ΔRiÞ and jth day is given by

Φj
i ¼

Nj
i

Aj
iϵ

j
iT

j
iΔRi

; ð1Þ

where Nj
i is the number of events corrected for bin-to-bin

migration, Aj
i is the effective acceptance, ϵji is the trigger

efficiency, and Tj
i is the daily collection time. In this Letter,

the helium flux was measured in 26 bins from 1.71 to
100 GV. Bin-to-bin migration of events was corrected using
the unfolding procedures described in Ref. [37] independ-
ently for each day.
Extensive studies were made of the systematic errors

[33]. These errors include the uncertainties in the back-
ground evaluation, the trigger efficiency, the geomagnetic
cutoff, the acceptance calculation, the rigidity resolution
function, the unfolding, and the absolute rigidity scale.
The time-dependent systematic error on the helium

fluxes associated with the daily trigger efficiency meas-
urement is < 1% over the entire rigidity range and for
all days.
The geomagnetic cutoff was calculated as described in

Supplemental Material [24], and the resulting systematic
error on the fluxes is negligible (< 0.4%) over the entire
(1.71–100 GV) rigidity range.
The daily effective acceptances Aj

i were calculated using
MC simulation and corrected for small differences between
the data and simulated events related to (a) event
reconstruction and selection, namely, in the efficiencies
of velocity vector determination, track finding, charge
determination, and tracker quality cuts, and (b) the details
of inelastic interactions of nuclei in the AMS materials. The
time-dependent systematic error on the fluxes associated
with the daily reconstruction efficiencies is < 1% over the
entire rigidity range for all days. The material traversed by
nuclei within AMS is composed primarily of carbon and
aluminum. The survival probabilities of helium due to
interactions in the materials were measured using cos-
mic-ray data collected by AMS as described in Ref. [31].
Short-term variations, due to temperature changes, are small
(< 0.2%). Long-term variations (< 3%), due to monitored
minute changes in detector elements, are included in theMC
simulation. After the time-dependent corrections, the daily
effective acceptances and the daily reconstruction efficien-
cies are constant within errors. The time-independent
systematic error on the helium fluxes due to uncertainties
in the evaluation of the inelastic interactions is < 1% over
the entire rigidity range [32].
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The time-independent rigidity resolution function for
helium has a pronounced Gaussian core and non-Gaussian
tails. The systematic error on the fluxes due to the rigidity
resolution function was obtained by repeating the unfolding
procedure while independently varying the width of the
Gaussian core by 5% and the amplitude of the non-
Gaussian tails by 10% [33]. The resulting systematic error
on the fluxes is < 1% in the entire rigidity range. The daily
flux variation leads to an additional uncertainty in the
unfolding procedure. The resulting time-dependent sys-
tematic error is < 1.3% at 1.71 GV and is negligible
(< 0.2%) above 5 GV for all days.
There are two contributions to the systematic uncertainty

on the rigidity scale [37]. The first is due to residual tracker
misalignment. This error was estimated by comparing the
E=p ratio for electrons and positrons, where E is the energy
measured with the electromagnetic calorimeter and p is the
momentum measured with the tracker. It was found to be
1=30 TV−1 [38]. The error is negligible (< 0.3%) below
100 GV. The second systematic error on the rigidity scale
arises from the magnetic field map measurement and its
temperature corrections. The total time-independent error
on the fluxes due to uncertainty on the rigidity scale has
been calculated to be < 0.6% over the rigidity range
below 100 GV.
The contributions to the systematic error from the trigger

efficiency, reconstruction efficiencies, and the unfolding
are evaluated independently each day and are added in
quadrature to derive a time-dependent systematic error,
which is < 1.5% at 1.71 GVand < 1% above 3 GV for all
days. The daily total systematic error is obtained by adding
in quadrature the individual contributions of the time-
independent systematic errors discussed above and the
time-dependent systematic errors. At 1.71 GV it is < 2.4%,
and above 3 GV it is < 1.4% for all days.
Most importantly, several independent analyses were

performed on the same data sample by different study
groups. The results of those analyses are consistent with
this Letter.
Results.—The measured daily helium fluxes (ΦHe) and

helium to proton flux ratios (ΦHe=Φp) including statistical
errors, time-dependent systematic errors, and total system-
atic errors are tabulated in Tables S1–S2824 of
Supplemental Material [24] as functions of the rigidity
at the top of the AMS detector. The presented daily data are
in agreement with our earlier 27-day results [20] in the
overlapping time period, but with improved accuracy. The
Φp data are from Ref. [18]. For the days when AMS
detected solar energetic particles (SEPs), the fluxes below
3 GV will be included in a future publication [39] and
not here.
Figure 1 shows ΦHe for six rigidity bins from 1.71 to

10.10 GV; see also Fig. S3 in Supplemental Material [24]
for ΦHe in rectangular format. In this and subsequent
figures, the error bars on the fluxes and flux ratios are

the sum in quadrature of the statistical and time-dependent
systematic errors. As seen, the daily helium flux ΦHe
exhibits variations on different timescales, from days to
years (years are defined in Table SA in Supplemental
Material [24]). The relative magnitude of these variations
decreases with increasing rigidity. At low rigidities, recur-
rent flux variations are clearly visible. An explanation of
the dip in 2017 is presented in Supplemental Material [24].
Figure S4 in Supplemental Material [24] shows ΦHe

measured in 2016 for three rigidity bins [1.71–1.92], [5.90–
6.47], and [16.60–22.80] GV. As seen, double-peak and
triple-peak structures are visible in different Bartels
rotations.
To study the recurrent time variations in ΦHe, a wavelet

time-frequency technique [40] was used to locate the time
intervals where the periodic structures emerge. The details
on the wavelet analysis are described in Supplemental
Material [24]. All the power spectra in the subsequent
figures of the text and Supplemental Material [24] are
drawn with normalized power defined in Supplemental
Material [24] to show the strength of the periodicities. The
ΦHe for three rigidity bins [1.71–1.92], [5.90–6.47], and

]-1GV-1sr-1s-2 [mHe�
0 50 100

2011

2012

2013

2014

2015

2016

2017

2018

2019

[1.71-1.92] GV [2.15-2.40] GV [2.97-3.29] GV
[4.02-4.43] GV [5.90-6.47] GV [9.26-10.10] GV

FIG. 1. The daily AMS helium fluxes ΦHe for six rigidity bins
from 1.71 to 10.10 GV measured from May 20, 2011 to October
29, 2019 which includes a major portion of solar cycle 24 (from
December 2008 to December 2019). The scale of daily helium
fluxes ΦHe is shown on the radius. The AMS data cover the
ascending phase, the maximum, and descending phase to the
minimum of solar cycle 24. Days with SEPs are removed for
the two lowest rigidity bins shown. The gaps in the fluxes are due
to detector studies and upgrades. As seen, ΦHe exhibit large
variations with time, and the relative magnitude of these
variations decreases with increasing rigidity.
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[16.60–22.80] GV in each of the nine years (2011–2019
defined in Table SA in Supplemental Material [24]),
together with their time-averaged power spectra and
95% confidence levels, are shown in Figs. S5–S13 in
Supplemental Material [24]. Similar to proton fluxes in
Ref. [18], we observed recurrent flux variations with a
period of ∼27 days with a significance above the 95% con-
fidence level in nearly all the time intervals from 2014 to
2018. Shorter periods of ∼13.5 and ∼9 days are significant
only in 2016.
To study the details of periodicity in 2016, Fig. S14 in

Supplemental Material [24] shows the wavelet time-fre-
quency power spectra of ΦHe for the same three rigidity
bins. As seen, periods of 9, 13.5, and 27 days are observed
at different time intervals. The strength of all three
periodicities changes with time and rigidity. In particular,
shorter periods of 9 and 13.5 days, when present, are more
visible at [5.90–6.47] and [16.60–22.80] GV compared to
[1.71–1.92] GV. We define two time intervals of interest

marked on the top of Fig. S14 in Supplemental Material
[24]: The first time interval (BRs 2489–2495) is when the
9-day period is visible; the second time interval (BRs
2496–2502) is when the 9-day period is not visible.
Figure 2 shows the normalized power as a function of

rigidity and period for the two time intervals (BRs 2489–
2495 and 2496–2502); see also Fig. S15 in Supplemental
Material [24] for details. The two figures show that the
strength of all three periodicities is rigidity dependent. In
particular, the strength of 9-day periodicity in the first half
of 2016 increases with increasing rigidity up to ∼5 GV.
The strength of 13.5-day periodicity in the second half of
2016 increases with increasing rigidity up to ∼20 GV. The
strength of 27-day periodicity in the first half of 2016
increases with increasing rigidity up to ∼10 GV. The AMS
results on three periodicities (9-, 13.5-, and 27-day) from
1.71 to 100 GV show that the strength of the periodicities
can increase with increasing rigidity and, thus, do not
support the general conclusion that the strength of the

Rigidity [GV]

10

Period [Day]

1

10

1

10

1

10

920

2

13.520

2

27
20

2

40

20

2

(a) First half of 2016

N
o

rm
al

iz
ed

 P
o

w
er

Rigidity [GV]

10

Period [Day]

1

11

920

2

13.520

2

27
20

2

40

20

2

(b) Second half of 2016

N
o

rm
al

iz
ed

 P
o

w
er

5
5

Rigidity [G
V]

210

Period [Day]
9 2013.5 20

27
20

40
20

Rigidity [G
V]

210

Period [Day]
9 2013.5 20

27
20

40
20

FIG. 2. The normalized power of helium fluxes as a function of rigidity and period for (a) the first and (b) the second half of 2016 from
1.71 to 20 GVand from 20 to 100 GV. As seen, the strength of 9-, 13.5-, and 27-day periodicities is rigidity dependent. In particular, the
strength of 9-day periodicity in the first half of 2016 increases with increasing rigidity up to ∼5 GV and then decreases with increasing
rigidity up to 100 GV. The strength of 13.5-day periodicity in the second half of 2016 increases with increasing rigidity up to ∼20 GV
and then decreases with increasing rigidity up to 100 GV.
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periodicities of cosmic-ray fluxes decreases with increasing
rigidity.
Note that both the unnormalized power of these perio-

dicities and the flux variance in the two time intervals
decrease with increasing rigidity as shown in Fig. S16 in
Supplemental Material [24]. The peak values of the
normalized power around 27 days as a function of rigidity
for each year are shown in Fig. S17 in Supplemental
Material [24]. As seen, the 27-day periodicity becomes
significant only from 2014 to 2018, and its rigidity
dependence varies in different time intervals.
The intensity variations of cosmic rays are caused by the

temporal evolution of the interplanetary space environment
[41] as discussed in Supplemental Material [24] and in
Ref. [18] (see also Ref. [42]).
Figure 3 shows the 3D functional dependence of

(ΦHe=Φp, time, and ΦHe) for the rigidity bin [1.71–
1.92] GV. Moving averages of length 14 BRs with a step
of one day are also shown. Figure 3(a) shows ΦHe=Φp as a
function of time at this rigidity bin. As seen in Fig. 3(a) and
Fig. S20 in Supplemental Material [24], ΦHe=Φp exhibits
variations on multiple timescales. On short timescales,
ΦHe=Φp has a dip in 2017 lasting months corresponding
to the dip observed in ΦHe [Fig. 3(b)]. On long timescales,
the ΦHe=Φp reaches a minimum in 2013–2014, when ΦHe
is also in its minimum, and a maximum in 2018–2019,
when ΦHe is also in its maximum. As shown in Fig. 3(a),
ΦHe=Φpð2018–2019Þ > ΦHe=Φpð2013–2014Þ. This
implies ΦHeð2018–2019Þ=ΦHeð2013–2014Þ > Φpð2018–
2019Þ=Φpð2013–2014Þ; i.e., ΦHe exhibits larger time
variations than Φp. ΦHe=Φp as a function of time for other

rigidity bins is shown in Fig. S21 in Supplemental Material
[24]. As seen, above ∼7 GV, ΦHe=Φp is time independent.
The comparison of ΦHe=Φpð2018–2019Þ and ΦHe=
Φpð2013–2014Þ as a function of rigidity is shown in
Fig. S22 in Supplemental Material [24]. As seen, ΦHe
exhibits larger time variations than Φp below ∼7 GV.
To investigate the difference of modulation in helium

fluxes and proton fluxes, we consider in more detail daily
ΦHe=Φp as a function of daily ΦHe as shown in Fig. 3(c).
Figure 4 shows ΦHe=Φp as a function of ΦHe both
calculated with the moving average of length 14 BRs with
a step of one day for the rigidity bins [1.71–1.92] and
[2.15–2.40] GV. As seen in Fig. 4, below 2.4 GV, a
hysteresis between ΦHe=Φp and ΦHe is observed before
and after the solar maximum in 2014. To assess the
significance of this hysteresis, in Fig. S23 in
Supplemental Material [24], we study the difference (in
units of σ) of ΦHe=Φp at the same ΦHe but different solar
conditions. As seen, the hysteresis is observed at ∼6σ in
each of the three consecutive rigidity bins below 2.4 GV,
with a combined significance greater than 7σ. The same
investigation is performed on dailyΦHe=Φp as a function of
daily Φp as shown in Figs. S24–S26 in Supplemental
Material [24]. As seen in Fig. S26 in Supplemental Material
[24], the hysteresis betweenΦHe=Φp andΦp is observed at
greater than 6σ in each of the three consecutive rigidity bins
below 2.4 GV, with a combined significance greater than
7σ. These combined significances show that at low rigidity
the modulation of ΦHe=Φp is different before and after the
solar maximum in 2014. These unexpected observations
provide inputs to the understanding of cosmic-ray
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propagation in the heliosphere and its dependence on
rigidity, on velocity, on solar wind turbulence, and on
other interplanetary parameters.
In conclusion, we have presented the precision mea-

surements of 2824 daily helium fluxes in cosmic rays from
1.71 to 100 GV between May 20, 2011 and October 29,
2019 based on 7.6 × 108 helium nuclei. The helium flux
ΦHe and the helium to proton flux ratio ΦHe=Φp exhibit
variations on multiple timescales. In nearly all the time
intervals from 2014 to 2018, we observed recurrent flux
variations with a period of 27 days. Shorter periods of 9 and
13.5 days are observed in 2016. The strength of all three
periodicities changes with both time and rigidity. In the
entire time period, we found that below ∼7 GV the helium
flux exhibits larger time variations than the proton flux, and
above ∼7 GV the helium to proton flux ratio is time
independent. Remarkably, below 2.4 GV, a hysteresis
between the helium to proton flux ratio and the helium
flux was observed at greater than the 7σ level. This shows

that at low rigidity the modulation of the helium to proton
flux ratio is different before and after the solar maximum in
2014. These results provide unique inputs to the under-
standing of cosmic rays in the heliosphere.
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