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9Università di Bologna, 40126 Bologna, Italy
10Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA

11East-West Center for Space Science, University of Maryland, College Park, Maryland 20742, USA
12IPST, University of Maryland, College Park, Maryland 20742, USA

13CNR–IROE, 50125 Firenze, Italy
14European Organization for Nuclear Research (CERN), 1211 Geneva 23, Switzerland
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Precision measurements by the Alpha Magnetic Spectrometer (AMS) on the International Space Station
of the deuteron (D) flux are presented. The measurements are based on 21 × 106 D nuclei in the rigidity
range from 1.9 to 21 GV collected from May 2011 to April 2021. We observe that over the entire rigidity
range theD flux exhibits nearly identical time variations with the p, 3He, and 4He fluxes. Above 4.5 GV, the
D=4He flux ratio is time independent and its rigidity dependence is well described by a single power law
∝ RΔ with ΔD=4He ¼ −0.108� 0.005. This is in contrast with the 3He=4He flux ratio for which we find
Δ3He=4He ¼ −0.289� 0.003. Above ∼13 GV we find a nearly identical rigidity dependence of the D and p
fluxes with a D=p flux ratio of 0.027� 0.001. These unexpected observations indicate that cosmic
deuterons have a sizable primarylike component. With a method independent of cosmic ray propagation,
we obtain the primary component of the D flux equal to 9.4� 0.5% of the 4He flux and the secondary
component of the D flux equal to 58� 5% of the 3He flux.

DOI: 10.1103/PhysRevLett.132.261001

Introduction.—Hydrogen nuclei are the most abundant
cosmic ray species. They consist of two stable isotopes,
protons (p) and deuterons (D). Big Bang nucleosynthesis
predicts a very small production of deuterium and, with
time, the abundance of D decreases from its primordial
value, with the measuredD=p ratio in the interstellar medium
of ∼2 × 10−5 [1]. Instead of being accelerated in supernova
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remnants like primary cosmic rays p and 4He, deuterons
are thought to overwhelmingly originate from interactions
of He with the interstellar medium. Together with 3He,
deuterons are called secondary cosmic rays [2,3]. Earlier,
we have found that heavier secondary cosmic rays Li, Be,
and B have the same rigidity dependence as each other [4].
Deuteron and He interaction cross sections with the

interstellar medium are significantly smaller than those of
heavier nuclei [5]. Explicitly, the D=4He and 3He=4He flux
ratios probe the properties of diffusion at larger distances
than those probed by heavier nuclei, and, therefore, provide
unique input to cosmic ray propagation models [6–11].
Previously, the 3He and 4He fluxes have been published

by AMS with a typical error of ∼2% [12]. There have
been measurements of deuteron and helium isotope fluxes
and their ratios as functions of kinetic energy per nucleon
with large (∼40%) errors [13–17]. There are no previous
measurements of the D=4He flux ratio as a function of
rigidity.
In this Letter, precision measurements of the D flux are

presented in the rigidity range from 1.9 to 21 GV, based on
21 × 106 D nuclei collected by AMS. The D flux error at
10 GV is 3.0%.
Detector.—The AMS detector layout and description are

presented in Refs. [18,19] and shown in Fig. S1 of the
Supplemental Material [20]. The elements used in this
analysis are the magnet [21], the silicon tracker [22–25],
the time of flight counters (TOF) [26], and the ring imaging
Čerenkov detector (RICH) [27]. Further information on the
AMS layout, performance, trigger, and the Monte Carlo
simulations (MC) [28–30] is presented in the Supplemental
Material [20].
Selection.—AMS has collected 1.8 × 1011 cosmic ray

events. D events are required to be downward going and to
have a reconstructed track in the inner tracker which passes
through L1, the top layer of the silicon tracker. Charge
measurements on L1, the upper TOF, the inner tracker, and
the lower TOF are required to be compatible with charge
number Z ¼ 1. Details of the event selection are provided
in the Supplemental Material [20]. Background toD comes
overwhelmingly from He fragmentation He → D in the
AMS materials, mostly C and Al, above L1. This back-
ground has been computed from data using the reaction
4Heþ ðC;AlÞ → T þ X, where T are tritium nuclei, see
Fig. S2 and discussion in Ref. [12] and in the Supplemental
Material [20], and it has been found to be ≤4% over the
entire rigidity range.
Analysis.—The flux of deuterons is measured in 26

rigidity bins ranging from 1.9 to 21 GV chosen according
to Ref. [12]. To compute the deuteron contribution in the
overall Z ¼ 1 flux, an unfolding procedure, similar to
Ref. [12] with the methods of Ref. [31] has been applied, as
detailed in the Supplemental Material [20].
The isotropic fluxΦi in the ith rigidity bin ðRi; Ri þ ΔRiÞ

is given by

Φi ¼
Ni

AiϵiΔRiTi
; ð1Þ

where Ni is the background subtracted number of events in
rigidity bin i, Ai the effective acceptance, ϵi the trigger
efficiency, ΔRi the bin width, and Ti is the collection time.
Extensive studies were made on the systematic errors.

The systematic errors in Ni are due to uncertainties in the
rigidity and velocity resolution functions, unfolding pro-
cedure, and background subtraction. The rigidity resolution
function, determined from MC simulations, has been
extensively verified with the data [32]. The inverse velocity
(1=β) resolution functions of the TOF and the RICH were
first studied at β ≃ 1 with data, as shown in Fig. S4 of the
Supplemental Material [20]. The dependence of the veloc-
ity resolution functions on β was obtained from MC
simulations and corrected with data, resulting in corrections
of <5% both for the TOF and the RICH. The systematic
uncertainty of Ni due to the uncertainties in rigidity and
velocity resolution functions and unfolding procedure has
been evaluated to be 3.2% at 2 GV, decreasing to 1% at
10 GV and remaining at this value up to 21 GV. The
systematic uncertainty of Ni from the background sub-
traction is <1% over the entire rigidity range.
Other sources of systematic error include uncertainties

in the trigger efficiency, in the geomagnetic cutoff, and in
the effective acceptance. The trigger efficiency has been
measured as described in Ref. [32]. The systematic error
on the fluxes due to the trigger efficiency uncertainties is
<1% over the entire rigidity range. The geomagnetic cutoff
factor was varied from 1.0 to 1.4, resulting in a negligible
systematic uncertainty <0.1% in the entire rigidity range.
The effective acceptances Ai were calculated from the

MC simulation and then corrected for differences between
the data and simulated events related to (a) event recon-
struction and selection, namely, in the efficiencies of track
finding, charge determination, tracker quality cuts, and
velocity quality cuts, and (b) inelastic interactions of D in
the AMS materials. The total correction to the effective
acceptances was found to be <10% over the entire rigidity
range. The systematic error on the D flux associated to
(a) has been found to be<1% below 3 GV, 2.5% between 3
and 8 GV, and <1% above 8 GV. The systematic error
associated to (b) on theD flux was found to be<2.5% over
the entire rigidity range.
The variations of the trigger and reconstruction efficien-

cies were studied as a function of time. A time-dependent
systematic error due to the variations of trigger and
reconstruction efficiencies for different time periods was
estimated to be <1% in the entire rigidity range. All the
other systematic errors are time independent.
Most importantly, independent analyses were performed

on the same data sample by four independent study groups.
The results of these analyses are consistent with this Letter.
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Results.—The D fluxes are measured as functions of the
rigidity from May 2011 to April 2021 in 33 time periods of
four Bartels rotations (108 days) each. To compare the time
and rigidity dependence of the D fluxes with the 3He and
4He fluxes, the 3He and 4He flux measurements of Ref. [12]
were extended to April 2021 and to the rigidity range
from 1.9 to 21 GV. The resulting 3He and 4He fluxes
are consistent with Ref. [12] over the overlapping time
period and rigidity range. The D, 3He, and 4He fluxes and
the flux ratios are presented in Tables S1–S99 in the
Supplemental Material [20,33], including statistical and
systematic errors. For the fluxes, the contributions of
individual independent sources to the systematic error
were added in quadrature to obtain the total systematic
uncertainty. For the D and 3He=4He flux ratios the corre-
lation of the systematic errors is taken into account to
evaluate the total systematic error.
Figure 1 shows the AMS time-averagedD=4He flux ratio

as a function of kinetic energy per nucleon together with
earlier measurements [14–17] and predictions from the
recent cosmic ray propagation models, GALPROP [34] and
USINE [35]. Figure S6 of the Supplemental Material [20]
shows the AMS time-averagedD=He flux ratio as a function
of kinetic energy per nucleon together with earlier measure-
ments [13–16] and predictions from the GALPROP and
USINE propagation models. Data from other experiments
have been extracted using Ref. [36]. As seen, the AMS
results on the D=4He and on the D=He flux ratios disagree
with the GALPROP predictions above ∼2 GeV=n and
disagree with the USINE predictions from ∼1.5 to
3.5 GeV=n and above ∼5 GeV=n. Future models may
provide alternative interpretations of our data.

Figure 2 shows the AMS D flux as a function of time for
three characteristic rigidity bins, compared with the AMS
p, 3He, and 4He fluxes. The p fluxes were extracted from
Ref. [37], with the D fluxes subtracted. As seen, all spectra
exhibit nearly identical variations with time and the relative
magnitude of the variations decreases with increasing
rigidity.
To study the differences in time variation for the D, 3He,

and 4He fluxes in detail we fit a linear relation between the
relative variations of ΦD=Φ4He and Φ3He=Φ4He and of Φ4He

for the ith rigidity bin, ðRi; Ri þ ΔRiÞ, as

Φi
D=Φi

4He
− hΦi

D=Φi
4He

i
hΦi

D=Φi
4Hei

¼ kiD
Φi

4He
− hΦi

4He
i

hΦi
4Hei

; ð2Þ

Φi
3He

=Φi
4He

− hΦi
3He

=Φi
4He

i
hΦi

3He
=Φi

4He
i ¼ ki3He

Φi
4He

− hΦi
4He

i
hΦi

4He
i ; ð3Þ

where kiD and ki3He are the slopes of the Φi
D=Φi

4He and

Φi
3He

=Φi
4He

linear dependence, and hΦi
D=Φi

4He
i, hΦi

3He
=Φi

4He
i
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FIG. 1. The AMS D=4He flux ratio as a function of kinetic
energy per nucleon with total errors, together with previous
measurements [14–17] and the predictions of the recent propa-
gation models GALPROP [34] (blue shaded area) and USINE
[35] (green shaded area). The shaded areas show the variations of
the model predictions due to solar modulation. As seen, the AMS
results on the D=4He flux ratio disagree with the GALPROP
predictions above ∼2 GeV=n and disagree with the USINE
predictions from ∼1.5 to 3.5 GeV=n and above ∼5 GeV=n.
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FIG. 2. The AMS D (red points), 3He (blue points), 4He (black
curves), and p (green curves) fluxes as functions of time for three
characteristic rigidity bins. The 3He, 4He, and p fluxes have been
scaled to obtain the same time-averaged flux asD in each rigidity
bin. The errors are the quadratic sum of the statistical and time-
dependent systematic errors. As seen, in each rigidity bin the four
fluxes show a similar time behavior.
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are the D=4He, 3He=4He flux ratio averages, and hΦi
4He

i is
the 4He flux average. The averages are taken over the entire
data taking period. Figure S7 of the Supplemental Material
[20] shows the AMS D=4He (left panels) and 3He=4He
(right panels) flux ratios as functions of the 4He flux for
three characteristic rigidity bins, together with the slopes k
obtained with Eqs. (2) and (3), respectively. Figure S8 of
the Supplemental Material [20] shows the fit results of the
slopes k as functions of rigidity from 1.9 to 7.8 GV. As
seen, kD is significantly above zero for rigidities from 2.1 to
4.5 GV, showing that theD flux is more modulated than the
4He flux in this rigidity range. Instead, k3He is significantly
below zero for rigidities from 1.9 to 3 GV, showing that the
3He flux is less modulated than the 4He flux in this rigidity
range, in agreement with our previous measurements in
Ref. [12]. kD is compatible with zero above 4.5 GVand k3He

is compatible with zero above 3 GV, showing that D flux
ratio is time independent above 4.5 GV and 3He=4He flux
ratio is time independent above 3 GV.
The time-averaged D, 3He, and 4He fluxes and the

corresponding flux ratios are reported in Tables S100 to
S102 in the Supplemental Material [20,33] as functions of
rigidity, including statistical and systematic errors.
Figure 3(a) shows the time-averaged D and 3He fluxes.

As seen, the difference between the two fluxes increases
with rigidity. Figure 3(b) shows the time average D=3He
flux ratio, which increases with rigidity above ∼3 GV.

In this and the subsequent figure, the data points are
placed along the abscissa at R̃ calculated for a flux
∝R−2.7 [38].
The time-averaged flux ratios of D and 3He=4He as

functions of rigidity are shown in Fig. 4(a). Above 4.5 GV
these ratios are well described by a single power law
CðR=4.5 GVÞΔ. For the D=4He flux ratio the fit yields:
ΔD=4He ¼ −0.108� 0.005 and CD=4He ¼ 0.170� 0.003
with a χ2=d:o:f: of 10=16. For the 3He=4He flux ratio
the fit yields: Δ3He=4He ¼ −0.289� 0.003 and C3He=4He ¼
0.142� 0.003with a χ2=d:o:f: of 20=16. Unexpectedly, the
D=4He flux ratio spectral index is different from that
observed for the 3He=4He flux ratio. The significance of
ΔD=4He > Δ3He=4He exceeds 10σ. This shows that cosmic
deuterons have a sizable primarylike component. The
excess of the D flux at high rigidities is also apparent

(b)

(a)

FIG. 3. (a) The AMS time-averaged D (red) and 3He (blue)
fluxes multiplied by R̃2.7 as functions of rigidity with total errors.
(b) The AMS time-averaged D=3He flux ratio as a function of
rigidity with total errors.

(a)

(b)

FIG. 4. (a) The AMS time-averaged D (red circles) and
3He=4He (blue squares) flux ratios as functions of rigidity with
total errors. Red and blue curves show power law fits
CðR=4.5 GVÞΔ for R > 4.5 GV to the D and 3He=4He flux
ratios respectively. (b) The AMS D=p and 3He=p flux ratios as
functions of rigidity with total errors. The solid red curve shows
the D=p flux ratio fit result with Eq. (4). For display purposes
only, the fit results are only shown for R > R0. The solid blue
curve shows the 3He=p flux ratio fit with CðR=13 GVÞΔ above
R0. As seen, the D=p flux ratio increases with rigidity and
becomes a constant above R0 ∼ 13 GV, while the 3He=p flux
ratio decreases with rigidity. Shaded areas show corresponding
flux ratio time variations at low rigidities.
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when comparing the AMS D=4He flux ratio with cosmic
ray propagation model predictions [34,35], see Fig. 1.
To study the differences in the rigidity dependence of D

and of primary p, the D=p flux ratio was computed and
shown in Fig. 4(b) as a function of rigidity. As seen, the
D=p flux ratio is increasing with rigidity. To establish the
rigidity interval where the D and p fluxes may have an
identical rigidity dependence, the D=p flux ratio above
4.5 GV has been fit with

D=p ¼
�
CðR=R0Þδ; R ≤ R0;

C; R > R0:
ð4Þ

The fit yields C ¼ 0.027� 0.001, δ ¼ 0.10� 0.01, and
R0 ¼ 13� 1 GV with a χ2=d:o:f: of 14=15. This shows
that the D and p fluxes have a nearly identical rigidity
dependence above ∼13 GV, further supporting the con-
clusion that the deuterons have a primarylike component.
Figure 4(b) also shows the 3He=p flux ratio together with
the power-law fit result with CðR=13 GVÞΔ above R0. The
fit yields C ¼ 0.018� 0.001, Δ ¼ −0.13� 0.03 with a
χ2=d:o:f: of 1.4=4. As seen, the rigidity dependence of the
D=p and 3He=p flux ratios are very different.
Finally, we determine the amount of the primary and

secondary components of the D flux using our cosmic ray
propagation independent method developed in Refs. [39,40].
To obtain primaryΦP

D and secondaryΦS
D components in the

D flux ΦD we fit ΦD ¼ ΦP
D þΦS

D to the weighted sum of a
characteristic primary cosmic ray flux, namely, 4He (Φ4He),
and of a characteristic secondary cosmic ray flux, namely,
3He (Φ3He), above 4.5 GV. The fit yields ΦP

D ¼ ð0.094�
0.005Þ ×Φ4He and ΦS

D ¼ ð0.58� 0.05Þ ×Φ3He with a
χ2=d:o:f: ¼ 6=16 as shown in Fig. 5.

In conclusion, precision measurements of the cosmic ray
D flux have been presented in the rigidity range from 1.9 to
21 GV. We observed that over the entire rigidity range the
D flux exhibits nearly identical time variations with the p,
3He, and 4He fluxes. Above 4.5 GV, the D=4He flux ratio
is time independent and its rigidity dependence is well
described by a single power law ∝ RΔ with ΔD=4He ¼
−0.108� 0.005. This is in contrast with the 3He=4He flux
ratio for which we find Δ3He=4He ¼ −0.289� 0.003. The
significance of ΔD=4He > Δ3He=4He exceeds 10σ. Above
∼13 GV the rigidity dependence of the D and p fluxes
is nearly identical with a D=p flux ratio of 0.027� 0.001.
These unexpected observations indicate that cosmic deu-
terons have a sizable primarylike component. With a
method independent of cosmic ray propagation, we obtain
the primary component of the D flux equal to 9.4� 0.5%
of the 4He flux and the secondary component of the D flux
equal to 58� 5% of the 3He flux.
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