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We present results over an 11-year Solar cycle of cosmic antiprotons based on 1.1 × 106 events in the
rigidity range from 1.00 to 41.9 GV. The p̄ fluxes exhibit distinct properties. The magnitude of the p̄ flux
temporal variation is significantly smaller than those of p, e−, and eþ. A hysteresis between the p̄ fluxes
and the p fluxes is observed, whereas the p̄ and e− fluxes show a linear correlation. With a model-
independent analysis, we found a universal relation between the shape of the rigidity spectrum and the
magnitude of flux temporal variation over an 11-year Solar cycle for both positively and negatively charged
particles. The simultaneous results on p̄ and p, e−, and eþ provide unique information for understanding
particle transport in the Solar System as a function of mass, charge, and spectral shape.

DOI: 10.1103/PhysRevLett.134.051002

In this Letter, we present continuous antiproton p̄ flux
measurements per Bartels rotation (BR: 27 days) across an
11-year period from May 2011 to June 2022 in the rigidity
range from 1.00 to 41.9 GV, based on 1.1 × 106 antiprotons
collected by the AlphaMagnetic Spectrometer (AMS) on the
International Space Station (ISS). Together with the AMS
results on protons p, electrons e−, and positrons eþ, these
measurements of the time and rigidity dependence of charged
elementary particles provide unique inputs for a comprehen-
sive study of effects related to the solar magnetic field [1].
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The knowledge of the fluxes of charged elementary
particles is crucial in understanding phenomena in the
cosmos [2–4], such as the nature of dark matter. Experi-
mental data on p̄ are limited due to the low rate and
overwhelming background; for each antiproton, there are
approximately 104 protons. Since the first observation of
antiprotons in cosmic rays [5], many studies on the antiproton
flux and antiproton-to-proton flux ratio have been performed
at different times and time intervals [6–13]. The AMS
measurements of the cosmic antiproton flux [14,15] have
generated widespread discussions about their origins [16].
The fluxes of charged cosmic rays outside the helio-

sphere are thought to be stable on the timescale of decades
[17–21]. Time-dependent variations in galactic cosmic-ray
fluxes measured inside the heliosphere are expected only
due to solar modulation [1]. Solar modulation involves
convective, diffusive, particle drift, and adiabatic energy
loss processes [22,23]. The modulation effect depends on
the rigidity, charge sign, mass, and shape of the rigidity
spectra outside the heliosphere [24–31]. In the force-field
approximation and many other models [22–33], the modu-
lation effect from the spectral shape originates from the
energy losses of particles in the heliosphere. At a given
rigidity, this process decreases the overall modulation effect
if the flux is increasing with rigidity and increases the
overall modulation effect if the flux is decreasing with
rigidity [32,33].
Previously, AMS has reported short-term variations on

the scale of days to months and long-term variations on the
scale of years in the daily fluxes of protons [34], elec-
trons [35], and positrons [36]. Antiprotons have an identical
mass but the opposite charge sign as protons and a different
mass but the same charge sign as electrons. In addition, the
p̄ flux has a unique spectral shape at low rigidity [6–15].
This information provides a distinct channel for under-
standing solar modulation effects [37–47]. Moreover,
accurate knowledge of the solar modulation effects on
antiproton fluxes is crucial for understanding the origin of
antiprotons in the cosmos [7,48].
The data presented in this Letter cover the main portion

of Solar cycle 24, including the polarity reversal of the
solar magnetic field in 2013 [49], and the beginning of
Solar cycle 25. The simultaneous measurement of all four
elementary particles provides comprehensive information
for understanding solar modulation.
Detector—The layout and description of the AMS

detector are presented in Refs. [15,50] and shown in
Fig. S1 in Supplemental Material [51]. The key elements
used in this measurement are the permanent magnet [52],
the silicon tracker [53–55], the transition radiation detector
(TRD) [56], the four planes of time of flight (TOF)
scintillation counters [57], the ring imaging Čerenkov
detector (RICH) [58], and the electromagnetic calorimeter
(ECAL) [59,60]. More information on AMS layout, per-
formance, trigger, and Monte Carlo simulation [61] is
detailed in Supplemental Material [51].

Event selection—Over 2.0 × 1011 cosmic-ray events
have been recorded in the first 11 years of AMS operations.
In the rigidity range from 1.00 to 41.9 GV, we select anti-
proton samples using the combined information of TRD,
TOF, RICH, silicon tracker, and ECAL. The details of the
event selection, including the geomagnetic cutoff [62,63]
and the backgrounds, are contained in Supplemental
Material [51] and in Refs. [14,15]. After selection and back-
ground subtraction, we obtained 1.1 × 106 antiprotons.
Data analysis—The isotropic flux in the ith absolute

rigidity bin (Ri; Ri þ ΔRi) for the jth time period is
given by

Φj
i ¼

Nj
i

Aj
ið1þ δjiÞϵjiTj

iΔRi

; ð1Þ

where Nj
i is the number of events corrected for background

and bin-to-bin migration using the unfolding procedure
described in Ref. [64], Aj

i is the effective acceptance
determined from the Monte Carlo simulation including
geometric acceptance, event selection efficiencies, and
interactions of antiprotons in the AMS materials, δji is
the small correction to the acceptance due to the difference
in selection efficiencies between data and Monte Carlo
simulation, ϵji is the trigger efficiency, and Tj

i is the
collection time (see Supplemental Material [51] for details).
The antiproton flux for each Bartels rotation period is
measured in 139 Bartels rotations from May 2011 to June
2022 in 11 rigidity bins from 1.00 to 41.9 GV.
The small corrections δji are estimated by comparing the

efficiencies in data and Monte Carlo simulation of every
selection cut using information from the detectors unrelated
to that cut [14]. The δji are found to have a small rigidity
dependence, smoothly varying from 8% at 1 GV to 3%
at 10 GV.
Extensive studies of both time-dependent and time-

independent systematic errors were performed. The major
sources of systematic errors include the uncertainties in the
background subtraction, the trigger efficiency, the geo-
magnetic cutoff, the acceptance calculation, the unfolding,
and the absolute rigidity scale.
The uncertainty in background subtraction comprises

two components: event selection and statistical fluctuation
of the background template used to differentiate antiprotons
from electrons and pions [14]. The systematic error due to
event selection is 3.5% at 1 GV and 0.5% at 10 GV. The
statistical fluctuation of the template affects the antiproton
signal yield. This uncertainty is estimated by sampling the
template according to the statistics and repeating the fitting,
as well as by varying the fitting procedure. This error is
1.5% at 1 GV and less than 1% above 3 GV. These two
components are independent and are added in quadrature.
The systematic error on antiproton fluxes associated with

the trigger efficiency measurement is < 1% over the entire
rigidity range and for every Bartels rotation.
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The geomagnetic cutoff is calculated as described in
Supplemental Material [51], and the resulting systematic
error on the fluxes is about 2% at 1 GVand negligible (less
than 0.4%) above 2 GV.
The systematic error of the effective acceptance is

primarily due to the uncertainty in the interaction cross
sections for antiprotons with the detector materials. It is
independent of time and is 4% at 1 GV, decreasing
smoothly to 2% above 20 GV [14]. The systematic error
of the acceptance correction associated with the efficiency
of selection and reconstruction is below 1%.
The systematic error associated with unfolding includes

time-dependent and time-independent errors. The time-
independent error comes from the uncertainty of the
rigidity resolution function which has a pronounced
Gaussian core and non-Gaussian tails. This error is
obtained by repeating the unfolding procedure while
independently varying the width of the Gaussian core by
5% and non-Gaussian tails by 20%. The resulting system-
atic error in the flux is 2.5% at 1 GV and decreases to less
than 0.2% above 10 GV. The additional time-dependent
systematic error in the unfolding procedure due to the
variation of the antiproton spectral shape per Bartels
rotation is about 4% at 1 GV and negligible (less than
0.3%) above 3 GV for all Bartels rotations.
The systematic error associated with the absolute rigidity

scale has two sources. The first is due to residual tracker
misalignment, and the second comes from the magnetic field
map measurement with its temperature corrections [34].
The total time-independent systematic error on the fluxes
due to uncertainty on the rigidity scale is less than 0.5% up
to 41.9 GV.
The total systematic error is obtained by adding in

quadrature the individual contributions of the time-
independent systematic errors and the time-dependent
systematic errors discussed above. For all Bartels rotations,
at 1 GV it is about 9%, and above 5 GV it is about 4%.
Most importantly, several independent analyses were

performed on the same data sample by different study
groups. The results of those analyses are consistent with
this Letter.
Results—The antiproton fluxes for each Bartels rotation,

ΦBR
p̄ , including statistical errors, time-dependent systematic

errors, and total systematic errors are tabulated in Tables
S1–S139 in Supplemental Material [51] as functions of
rigidity at the top of the AMS detector. The time-averaged
antiproton flux hΦp̄i over the 11-year Solar cycle is
tabulated in Table S140 in Supplemental Material [51].
The tables are also provided in a machine-readable
form [65]. The proton fluxes Φp, the electron fluxes Φe− ,
and the positron fluxes Φeþ are taken from Refs. [34–36].
They are rebinned in order to compare with the anti-
proton data. The complete rebinned Φp, Φe− , and Φeþ data
up to June 2022 are provided in a machine-readable
form [34–36].

Figure 1 presents the antiproton fluxes as a function of
rigidity and as a function of time. The fluxes measured for
each Bartels rotation (ΦBR

p̄ ) are presented in Fig. 1(a) below
2.97 GV, where the fluxes increase with increasing rigidity,
and above 2.97 GV in Fig. 1(b), where the fluxes decrease
with increasing rigidity. To examine the 11-year variations
of the antiproton fluxes, Figs. 1(c) and 1(d) present the Φp̄

using their 13-BR moving average with a step of 1 BR for
the same rigidities as in Figs. 1(a) and 1(b), respectively. As
seen, Φp̄ exhibit distinct properties as a function of time.
Below ∼10 GV, Φp̄ exhibit significant temporal variation
and the relative magnitudes of the flux variations decrease
with increasing rigidity. Figures 1(e) and 1(f) present the
three-dimensional variation of Φp̄ as functions of time and
rigidity. Figure S2 in Supplemental Material [51] shows
hΦp̄i together with other measurements collected over
much shorter time intervals [6–13]. As seen, hΦp̄i exhibits
distinct properties as a function of rigidity: From 1 to 2 GV
the flux increases with rigidity, from 2 to 4 GV the flux
reaches a maximum and turns over at ≈3 GV, and from
4 GV the flux continues to decrease.
Figure 2 presents the fluxes of elementary particles

measured by AMS in the 11-year period. Figure 2(a)
shows the time-averaged fluxes hΦpi, hΦe−i, hΦeþi, and
hΦp̄i as a function of rigidity. As seen, the rigidity
dependence of hΦp̄i is distinctly different from that of
the other fluxes which all decrease with increasing rigidity.
The ranges of flux temporal variation during this period are
presented as shaded bands. Figure S3 in Supplemental
Material [51] presents the temporal evolution of all
elementary particle fluxes for four characteristic rigidity
bins using their 13-BR moving average values. As seen,
below ≈4 GV, the magnitude of the Φp̄ temporal variation
is significantly smaller compared to that of the other fluxes.
All four fluxes reach a minimum around 2014–2015 and a
maximum around 2020. Figures 2(b)–2(g) present the
temporal evolution of Φp, Φe− , Φeþ , and Φp̄ in the rigidity
range [1.00–1.92] GV. As seen, all four fluxes exhibit
complex temporal structures. However, the temporal struc-
tures of Φp̄ are distinctly different from that of the other
elementary particle fluxes. Figures 2(b) and 2(c) compare
particles with opposite charge but identical mass. As seen,
the difference in the temporal variation betweenΦp̄ andΦp

is much greater than between Φe− and Φeþ . Similarly,
Figs. 2(d) and 2(e) compare particles with identical charge
but different masses. As seen, the difference in the temporal
variation between Φe− and Φp̄ is much larger than that
between Φeþ and Φp, despite the same difference in mass.
Figures 2(f) and 2(g) compare the fluxes of antiparticles
and particles. As seen, the difference in the temporal
variations between Φp̄ and Φeþ is also distinct from that
between Φp and Φe− . These observations indicate the
important modulation effects of the spectral shape, in
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addition to the modulation effects from particle mass and
charge sign.
The long-term variations on the scale of years are related

to the 11- and 22-year cycles of the solar magnetic field [1].
Previously, AMS studied the differences in the modulation
of Φp, Φe− , and Φeþ , using their correlation in time and
observed a hysteresis behavior between Φe− and Φp [35]
andΦe− andΦeþ [36], but a linear relation betweenΦeþ and
Φp [36]. With the antiproton results, AMS is able to study

the correlation among all four elementary particle fluxes
and measure the differences in their modulation. Figure 3
summarizes the flux correlations between elementary
particles in the rigidity range [1.00–2.97] GV [34–36].
As seen in Fig. 3(a), Φp̄ and Φp exhibit a hysteresis

behavior, such that, at a given Φp, Φp̄ shows two distinct
branches over time, one before 2014–2015 and one after.
This behavior is similar to the hysteresis behavior between
Φe− and Φeþ shown in Fig. 3(b). The hysteresis behavior

(a) (b)

(c) (d)

(e) (f)

FIG. 1. Temporal evolution of ΦBR
p̄ for (a) below 2.97 GV where the fluxes ΦBR

p̄ increase with increasing rigidity and (b) above
2.97 GV where the fluxesΦBR

p̄ decrease with increasing rigidity, as indicated by the arrows. (c) and (d) present theΦp̄ using their 13-BR
moving average values. The data point for each Bartels rotation period is calculated from a time window of 13 BR centered around that
period, taking into account the correlation in the systematic errors. In (a)–(d), the error bars are the quadratic sum of the statistical and
time-dependent systematic errors. As seen, over a Solar cycle of 11 years, Φp̄ exhibit significant temporal variation up to ∼10 GV and
the relative magnitudes of the flux temporal variations decrease with increasing rigidity. Above ∼10 GV, the flux variations are not
visible. In (e) and (f), the three-dimensional variation of Φp̄ as functions of time and rigidity is shown.
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between Φp̄ and Φp is studied following the method
described in Ref. [35] and is compared with the hysteresis
behavior between Φe− and Φeþ as detailed in Supplemental
Material [51]. As seen in Fig. S4, in each rigidity bin below
11.0 GV, a hysteresis between Φp̄ and Φp is observed. The
hysteresis behavior between particles with identical mass
but opposite charge sign shows a clear charge-sign effect in
the solar modulation. Furthermore, as seen in Table SA and
Fig. S5, below 4.88 GV the detailed hysteresis behavior
betweenΦp̄ andΦp is different from the hysteresis behavior
between Φe− and Φeþ by more than 4σ significance.
Figure 3(c) shows a linear relation between Φp̄ and Φe− .

This behavior is similar to the linear relation between Φp

and Φeþ shown in Fig. 3(d). The relation between Φp̄ and
Φe− is analyzed as described in Supplemental Material [51]
and presented in Figs. S6 and S7. As seen, the linear
relation between Φp̄ and Φe− is observed for all rigidity
bins between 1.00 and 7.09 GV, where Φp̄ is modulated
significantly less than Φe− . In comparison, the linear
relation between Φp and Φeþ shows that their temporal
variations are more similar, while Φp is also modulated
less than Φeþ [36]. These observations show that particles
with the same charge sign are modulated similarly but
with differences in their temporal variation originating from
mass and spectral shape. Since the difference in mass
between p and eþ is the same as between p̄ and e−, the
difference between the linear relations of Φp̄ versus Φe−

and Φp versus Φeþ , as seen in Figs. 3(c) and 3(d) and in
Fig. S7, shows the importance of the spectral shape in solar
modulation.
To study the modulation effects from the spectral

shape, we perform a model-independent analysis using
the spectral indices of the 11-year time-averaged fluxes and
the magnitude of flux temporal variation. The spectral
indices γ of elementary particle fluxes are determined from

γ ¼ d½logðΦÞ�=d½logðRÞ�: ð2Þ
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FIG. 2. (a) The 11-year time-averaged fluxes of hΦp̄i (yellow
points), hΦeþi (green points), hΦe−i (magenta points), and hΦpi
(blue points). The ranges of the flux temporal variation during
this period are shown as shaded bands. In (b)–(g), the temporal
evolutions of cosmic elementary particle fluxes in the rigidity
range 1.00–1.92 GV for Φp̄ (yellow points), Φp (blue points),
Φeþ (green points), and Φe− (magenta points) are compared. As
seen, all four fluxes exhibit complex temporal structures, and Φp̄

is distinctly different from all other elementary particle fluxes.
For (b)–(g), each data point represents the 13-BR moving average
flux. Φp, Φeþ , and Φe− are scaled as indicated such that all fluxes
are of the same magnitude on average during 2015.
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FIG. 3. Correlation between elementary particle fluxes in the
rigidity range from 1.00 to 2.97 GV for (a) Φp̄ and Φp, (b) Φe−

and Φeþ , (c) Φp̄ and Φe− , and (d) Φp and Φeþ . The data points
correspond to flux values of 13-BR moving averages and are
normalized to their respective time-averaged value hΦi over the
11-year period. Different colors indicate different years. As seen
in (a) and (b), the flux correlations between particles with
opposite charge sign but identical mass exhibit distinct hysteresis
behaviors. In contrast, (c) and (d) show that the flux correlations
between particles with the same charge sign but different masses
exhibit linear relations. Note that, in (a) and (c), the fine structures
within the timescale of one year are mostly due to the statistical
fluctuations of Φp̄ and are not significant. Note that in this figure
the horizontal error bars are smaller than the symbols.
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Figure S8 in Supplemental Material [51] shows the spectral
indices for p̄ðγp̄Þ, pðγpÞ, e−ðγe−Þ, and eþðγeþÞ as a function
of rigidity. They are determined from the 11-year time-
averaged fluxes using sliding rigidity windows of
5–7 bins chosen to have sufficient sensitivity to the spectral
index. As seen, γp̄ exhibits distinct behavior compared to
other particles. Below ≈ 3 GV, γp̄ > 0, that is, the anti-
proton fluxes increase with increasing rigidity. For each
rigidity bin, γp̄ > γe− and γp > γeþ , but the difference
between γp̄ and γe− is much larger than that between γp
and γeþ .
To quantify the flux variation range over this 11-year

Solar cycle, for each particle and in each rigidity bin, the
13-BRmoving average fluxes are used to define the relative
magnitude of the flux variation (M) as the ratio between the
maximum flux value and the minimum flux value over the
11-year period. Figure S9 in Supplemental Material [51]
presents the magnitude of flux temporal variations for
p̄ðMp̄Þ, pðMpÞ, e−ðMe−Þ, and eþðMeþÞ as a function of
rigidity. As seen, below 4.02 GV, Mp̄ is much smaller than
others. Furthermore, Mp̄ < Me− and Mp < Meþ , but the
difference betweenMp̄ andMe− is larger than that between
Mp and Meþ .
Figure 4(a) presents M versus γ for negatively charged

particles p̄ and e− and positively charged particles p and
eþ. Remarkably, for each rigidity bin, M versus γ exhibits
the same dependence for negatively and positively charged
particles as indicated by the dashed lines. As seen,
Mp̄ < Me− while γp̄ > γe− , andMp < Meþ while γp > γeþ .
Figure 4(b) shows the ratios of the difference inM (ΔM) to
the difference in γ (Δγ) between negatively charged parti-
cles e− and p̄ [ΔMðe−; p̄Þ=Δγðe−; p̄Þ] and between pos-
itively charged particles eþ and p [ΔMðeþ; pÞ=Δγðeþ; pÞ]
up to 11 GV. As seen, the ratios are less than zero; that is,
the flux with a larger spectral index has a smaller variation
magnitude. The ratios approach zero with increasing
rigidity, indicating that the influence of the spectral shape
on flux variation magnitude is decreasing with increasing
rigidity. Most importantly, the ratios determined from
positively and negatively charged particles are the same
within the errors, revealing a universal relation between
flux variation magnitude and spectral index, independent of
the charge sign. This universal relation shows that the
differences in modulation between p̄ and e− and between p
and eþ are mainly due to the difference in their spectral
shape. These results on the effect of spectral shape in solar
modulation provide crucial input to understand the anti-
proton local interstellar spectrum.
In conclusion, we presented the AMS measurements

over an 11-year Solar cycle of cosmic antiprotons based on
1.1 × 106 events in the rigidity range from 1.00 to 41.9 GV.
The temporal variations of the fluxes of all cosmic charged
elementary particles, p̄, p, e−, and eþ, are studied simulta-
neously. Compared to p, e−, and eþ, the p̄ fluxes exhibit

distinct properties. The magnitude of the p̄ flux temporal
variation is significantly smaller than those of p, e−,
and eþ. A hysteresis between the p̄ fluxes and the p
fluxes is observed, whereas the p̄ and e− fluxes show a
linear correlation. With a model-independent analysis, we
found a universal relation between the shape of the rigidity
spectrum and the magnitude of flux temporal variation over
an 11-year Solar cycle, independent of the charge sign.
These results provide unique information for understanding
solar modulation as a function of mass, charge, and spectral
shape and essential inputs for the understanding of the
origin of antiprotons in the cosmos.
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