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We present the first measurement of cosmic-ray fluxes of 6Li and 7Li isotopes in the rigidity range from
1.9 to 25 GV. The measurements are based on 9.7 × 105 6Li and 1.04 × 106 7Li nuclei collected by
the Alpha Magnetic Spectrometer on the International Space Station from May 2011 to October 2023.
We observe that over the entire rigidity range the 6Li and 7Li fluxes exhibit nearly identical time variations
and, above ∼4 GV, the time variations of 6Li, 7Li, He, Be, B, C, N, and O fluxes are identical. Above
∼7 GV, we find an identical rigidity dependence of the 6Li and 7Li fluxes. This shows that they are both
produced by collisions of heavier cosmic-ray nuclei with the interstellar medium and, in particular,
excludes the existence of a sizable primary component in the 7Li flux.

DOI: 10.1103/PhysRevLett.134.201001

Introduction—Lithium nuclei are among the rarest in the
Solar System, yet they are relatively common in cosmic
rays [1,2]. They consist of two stable isotopes, 6Li and 7Li.
Both are thought to be produced by collisions of heavier
cosmic-ray nuclei with the interstellar medium; therefore,
they are called secondary cosmic rays. In addition, 7Li may
also contain a primordial component, produced at the time
of the Big Bang, and a primary component, produced from
7Be decay by electron capture at astrophysical sources, such
as low-mass stars or novae [3–5]. Lithium is the only
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element having three or more possible sources in the
Cosmos. Establishing the origin of 7Li has an important
impact on understanding the formation of the Universe
and its chemical evolution. Currently, the origin of 7Li is
not well understood. First, the primordial 7Li abundance
predicted from Big Bang nucleosynthesis does not match
the value inferred from stellar observations and cosmic-ray
data [6]. Second, estimates of primordial 7Li abundance
from stellar and cosmological observations are in disagree-
ment [7]. Finally, the Alpha Magnetic Spectrometer (AMS)
lithium flux (6Liþ 7Li) measurement [8,9] could not be
described by calculations of the secondary lithium flux by
cosmic-ray propagation models. Explicitly, at rigidities
above ∼4 GV, an excess over model predictions has been
observed and interpreted as either due to the presence of a
primary component in the 7Li flux [10] or due to uncer-
tainties on nuclear fragmentation cross sections [11–13].
Precise knowledge of the rigidity dependencies of the
cosmic-ray 6Li and 7Li isotope fluxes provides insights
into the origin of lithium nuclei.
Over the last 50 years, several experiments have mea-

sured the 7Li=6Li ratio as a function of kinetic energy per
nucleon below 1.7 GeV=n with ∼20% errors and as a
function of rigidity below 6.3 GV with ∼15% uncertainties
[14–21]. The lithium isotope fluxes have been measured
only below 0.3 GeV=n (below ∼1.9 GV in rigidity) [15].
In this Letter, we present precision measurements of the

6Li and 7Li fluxes in the rigidity range from 1.9 to 25 GV,
based on 9.7 × 105 6Li and 1.04 × 106 7Li nuclei collected
by AMS from May 2011 to October 2023. The total error
at 10 GV is 3.3% for both 6Li and 7Li fluxes and 2.2% for
7Li=6Li flux ratio.
Detector—The AMS detector layout and description

are presented in Refs. [9,22] and shown in Fig. S1 of
Supplemental Material [23]. The elements used in this
analysis are the magnet [24], the silicon tracker [25–28],
the time of flight counters (TOF) [29], and the ring imaging
Čerenkov detector (RICH) [30]. Further information on the
AMS layout, performance, trigger, and the Monte Carlo
(MC) simulations [31,32] is presented in Supplemental
Material [23].
Selection—AMS collected 2.3 × 1011 cosmic-ray events

from May 2011 to October 2023. Lithium nuclei events are
required to be downward going and to have a reconstructed
track in the inner tracker which passes through L1, the top
layer of the silicon tracker. Charge measurements on L1,
the upper TOF, the inner tracker, and the lower TOF are
required to be compatible with charge number Z ¼ 3.
Details of the event selection, including the geomagnetic
cutoff [33], are provided in Supplemental Material [23]
and in Ref. [8]. With this selection, the charge confusion
from noninteracting nuclei is negligible (< 0.01%) over the
entire rigidity range. The residual background comes from
heavier nuclei that interact above tracker L2; see discussion
and Figs. S2 and S3 in Supplemental Material [23]. This

background has been found to be 1.0% for 6Li and 1.1%
for 7Li at 2 GV, decreasing with increasing rigidity and
becoming 0.1% at 25 GV for both 6Li and 7Li. The
additional background for 6Li from the fragmentation of
7Li → 6Li within AMS is estimated from MC simulation
and found to be < 1.8% in the entire rigidity range.
Analysis—The fluxes of lithium isotopes Φ6Li and Φ7Li

are measured in 28 rigidity bins ranging from 1.9 to 25 GV

chosen according to Ref. [8]. The isotropic flux Φ
ALi
i in the

ith rigidity bin ðRi; Ri þ ΔRiÞ is given by

Φ
ALi
i ¼ NA

i

AA
i ϵiΔRiTi

; ð1Þ

where A ¼ 6, 7 is the atomic mass number, NA
i is the

number of background subtracted events, AA
i is the effec-

tive acceptance, ϵi is the trigger efficiency, and Ti is the
collection time. To compute the NA

i , a procedure based
on fitting the inverse mass distribution followed by the
unfolding procedure described in Ref. [34] was performed;
see a detailed description and Figs. S4 and S5 in
Supplemental Material [23]. In total, 9.7 × 105 6Li and
1.04 × 106 7Li events were obtained.
Extensive studies were made on the systematic errors.

The systematic errors in NA
i are due to uncertainties in

the rigidity and velocity resolution functions, fitting and
unfolding procedures, and background subtraction. The
rigidity resolution function, determined from MC simu-
lation, has been extensively verified with the data [8]. The
velocity resolution functions of TOF and RICH [35] were
determined from the MC simulation and validated with
data; see discussion and Figs. S6–S9 in Supplemental
Material [23].
The systematic uncertainty ofNA

i due to the uncertainties
in the rigidity and velocity resolution functions and due to
the fitting and unfolding procedures has been evaluated to
be < 2.2% below 4 GV and < 1.8% above 4 GV for both
Φ6Li and Φ7Li. The systematic uncertainty of NA

i from the
background subtraction is < 1.0% for Φ6Li and < 0.5% for
Φ7Li over the entire rigidity range.
Other sources of systematic errors include the uncer-

tainties in the trigger efficiency, the geomagnetic cutoff
factor, and the acceptance calculation.
The trigger efficiency has been measured as described

in Ref. [31]. The systematic error for both fluxes due to
the trigger efficiency uncertainties is < 0.3% over the
entire rigidity range. The geomagnetic cutoff factor was
varied from 1.0 to 1.4, resulting in a negligible systematic
uncertainty < 0.1% in the entire rigidity range.
The effective acceptances AA

i were calculated from the
MC simulation and then corrected for differences between
the data and simulated events related to (a) event
reconstruction and selection, namely, in the efficiencies
of track finding, charge determination, tracker quality cuts,
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and velocity quality cuts, and (b) inelastic interactions of
lithium isotopes in the AMS materials. The total correction
from (a) and (b) to the effective acceptances was found to
be< 5% over the entire rigidity range. The systematic error
on the Φ6Li and Φ7Li associated with (a) has been found to
be < 2% over the entire rigidity range. The material
traversed by nuclei within AMS is composed primarily
of carbon and aluminum. The survival probability of
Li nuclei due to interactions in the materials was measured
using cosmic-ray data collected by AMS as described in
Ref. [36]. The systematic error associated with (b) on the
fluxes was found to be < 2.2% for Φ6Li and < 2.3% for
Φ7Li over the entire rigidity range.
The variation of the reconstruction and selection effi-

ciencies were studied as a function of time. A time-
dependent systematic error due to the variations of
reconstruction and selection efficiencies for different time
periods was estimated to be < 1.3% for both fluxes in the
entire rigidity range. All the other systematic errors are time
independent.
Most importantly, independent analyses were performed

on the same data sample by three independent study
groups. The results of these analyses are consistent with
this Letter.
Results—The Φ6Li and Φ7Li fluxes, and the Φ7Li=Φ6Li

flux ratio, have been measured as functions of rigidity from
1.9 to 25 GV in 42 time periods of four Bartels rotations
(108 days) each from May 2011 to October 2023 and
are tabulated in Tables S1–S42 in Supplemental Material
[23,37], including statistical and systematic errors. For the
fluxes, the contributions of individual independent sources
to the systematic error were added in quadrature to obtain
the total systematic uncertainty. For the Φ7Li=Φ6Li, the
correlation of the systematic errors is taken into account
to evaluate the total systematic error. Note, the sum of
the measured Φ6Li and Φ7Li is in good agreement with the
AMS results of Refs. [8,9] in the overlapping rigidity and
time intervals.
The time-averaged Φ6Li and Φ7Li, and the Φ7Li=Φ6Li, are

reported in Table S43 in Supplemental Material [23,37]
as functions of rigidity, including statistical and systematic
errors.
Figure 1 shows the AMS time-averaged Φ7Li=Φ6Li as a

function of kinetic energy per nucleon together with earlier
measurements [17–19,21]. Data from other experiments
have been extracted using Ref. [38].
Figure 2 shows the AMS Φ6Li and Φ7Li as functions of

time for four characteristic rigidity bins, compared with the
AMS He flux ΦHe [39]. As seen, the Φ6Li, Φ7Li, and ΦHe

exhibit nearly identical variations with time and the relative
magnitude of the variations decreases with increasing
rigidity. This implies that Φ6Li and Φ7Li exhibit variations
with time nearly identical to those of Be, B, C, N, and
O fluxes [40].

2 4 6 8 10

 [GeV/n]KE0.6

0.8

1

1.2

1.4

Li6
 /

Li7

AMS
AMS01
SMILI-II
ISOMAX
PAMELA

FIG. 1. The AMS Φ7Li=Φ6Li as a function of kinetic energy
per nucleon with total errors, together with previous measure-
ments [17–19,21].

0.1

0.2

0.3

Li6

 1.10Li7

 0.0020He

(a) [1.92-2.15] GV

0.1

0.2

Li6

 1.02Li7

 0.0027He

(b) [2.97-3.29] GV

0.005

0.01

Li6

 0.85Li7

 0.0027He

(c) [12.00-13.00] GV

2011 2013 2015 2017 2019 2021 2023
Date [year]

0.0005

0.001

0.0015

0.002

Li6

 0.88Li7

 0.0024He

(d) [22.80-24.70] GV

]
-1

G
V

-1
sr

-1 s
-2

Fl
ux

 [m

FIG. 2. The AMS Φ6Li (magenta points), Φ7Li (yellow points),
andΦHe (cyan open circles) as functions of time for four character-
istic rigidity bins (a) [1.92–2.15] GV, (b) [2.97–3.29] GV,
(c) [12.00–13.00] GV, and (d) [22.80–24.70] GV. The Φ7Li and
ΦHe have been scaled to obtain the same time-averaged flux asΦ6Li

in each rigidity bin. The errors are the quadratic sumof the statistical
and time-dependent systematic errors. As seen, in each rigidity bin
the three fluxes show a nearly identical time behavior.
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To study the differences in time variation for the Φ6Li,
Φ7Li, and ΦHe in detail, we fit a linear relation between the
relative variations of Φ6Li=ΦHe and Φ7Li=ΦHe and of ΦHe

for the ith rigidity bin, ðRi; Ri þ ΔRiÞ, as

Φ
6Li
i =ΦHe

i − hΦ6Li
i =ΦHe

i i
hΦ6Li

i =ΦHe
i i

¼ k
6Li
i

ΦHe
i − hΦHe

i i
hΦHe

i i ; ð2Þ

Φ
7Li
i =ΦHe

i − hΦ7Li
i =ΦHe

i i
hΦ7Li

i =ΦHe
i i

¼ k
7Li
i

ΦHe
i − hΦHe

i i
hΦHe

i i ; ð3Þ

where k
6Li
i and k

7Li
i are the slopes of the linear dependence

for the ith bin, and hΦ6Li
i =ΦHe

i i, hΦ7Li
i =ΦHe

i i, and hΦHe
i i are

the averages of Φ6Li=ΦHe, Φ7Li=ΦHe, and ΦHe over the
entire data taking period, similar to Ref. [41]. Figures S10
and S11 of Supplemental Material [23] show the relative
variation of Φ6Li=ΦHe and Φ7Li=ΦHe as a function of the
relative variation ofΦHe for four characteristic rigidity bins,
together with the fits with Eqs. (2) and (3), respectively.
Figure S12 of Supplemental Material [23] shows the fit
results of the slopes k

6Li and k
7Li as functions of rigidity

from 1.9 to 7.1 GV. As seen, from 1.9 to 3.64 GV, both k
6Li

and k
7Li are below zero, showing that Φ6Li and Φ7Li are less

modulated than ΦHe in this rigidity range. From 1.9 to
4.02 GV, k

7Li is smaller than k
6Li, indicating thatΦ7Li is less

modulated than Φ6Li in this rigidity range. Above 4.02 GV,
k
6Li and k

7Li are both compatible with zero, showing that
Φ6Li, Φ7Li, and ΦHe exhibit identical variations with time at
rigidities higher than ∼4 GV. This implies that above
∼4 GV, the time variations of Φ6Li and Φ7Li are identical
to those of Be, B, C, N, and O fluxes [40].
Figure 3 shows the time-averagedΦ6Li andΦ7Li fluxes as

functions of rigidity, together with their time variation. In
this and the subsequent figure, the data points are placed
along the abscissa at an R̃ calculated for a flux ∝ R−2.7 [42].
The time-averaged Φ7Li=Φ6Li flux ratio as a function of

rigidity is shown in Fig. 4, together with the predictions
of the recent propagation models GALPROP [10] and
USINE [11] based on AMS lithium flux (6Liþ 7Li)
measurement [8,9]. As seen, both models fail to describe
the AMS result on Φ7Li=Φ6Li. In particular, the USINE
model prediction does not agree with the AMS measure-
ments within the model uncertainties that are related to the
6Li and 7Li production cross sections from heavier nuclei.
Figure S13 of Supplemental Material [23] shows the AMS
Φ7Li=Φ6Li together with two predictions of the GALPROP
model, which use two different parametrizations [43] of the
6Li and 7Li production cross sections but both assume only
a secondary origin of the Li isotopes [44]. As seen, neither
model prediction agrees with the AMS result.

To study the rigidity dependence of Φ7Li=Φ6Li, it has
been fitted over the entire rigidity range with

Φ7Li=Φ6Li ¼
�
CðR=R0Þδ; R ≤ R0;

C; R > R0:
ð4Þ

FIG. 3. The AMS time-averaged Φ6Li (yellow) and Φ7Li (cyan)
multiplied by R̃2.7 with total errors as functions of rigidity,
together with the flux time variations, yellow and cyan bands,
respectively.

FIG. 4. The AMS time-averagedΦ7Li=Φ6Li with total errors as a
function of rigidity, together with the predictions of the recent
propagation models GALPROP including a primary 7Li compo-
nent in the flux [10] (blue curve) and USINE assuming secondary
origin of 6Li and 7Li [11] (green curve with shaded area). The
green shaded area shows the uncertainty in the ratio due to
uncertainties related to the 6Li and 7Li production cross sections
from heavier nuclei. In both model predictions, the time-averaged
solar modulation [45] corresponding to the AMS data taking
period is used. Variation of model predictions due to solar
modulation uncertainty is negligible. The solid yellow curve
shows the fit result with Eq. (4). As seen, the Φ6Li and Φ7Li have
an identical rigidity dependence above ∼7 GV.
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The fit yields C ¼ 1.17� 0.02, δ ¼ 0.21� 0.01, and
R0 ¼ 7.2� 0.4 GV with a χ2=d:o:f: of 23.9=25, see
Fig. 4. This shows that Φ6Li and Φ7Li have an identical
rigidity dependence above ∼7 GV, see further discussion
and Fig. S14 in Supplemental Material [23].
This observation shows that both 6Li and 7Li are

produced by collisions of heavier cosmic-ray nuclei with
the interstellar medium and excludes the existence of a
sizable primary component in the 7Li flux. As an example,
using the AMS O flux [46] as an estimator of the primary
7Li flux rigidity dependence, and the AMS measured 6Li
flux rigidity dependence for the secondary 7Li flux rigidity
dependence, we find the primary component in the 7Li flux
is < 3% at 90% confidence level above 7 GV; see further
discussion and Fig. S15 in Supplemental Material [23].
In conclusion, precision measurements of the cosmic-ray

6Li and 7Li fluxes have been presented in the rigidity range
from 1.9 to 25 GV. We observed that over the entire rigidity
range the 6Li and 7Li fluxes exhibit nearly identical time
variations and, above ∼4 GV, the time variations of 6Li,
7Li, He, Be, B, C, N, and O fluxes are identical. Above
∼7 GV, we found an identical rigidity dependence of the
6Li and 7Li fluxes. This shows that both 6Li and 7Li are
produced by collisions of heavier cosmic-ray nuclei with
the interstellar medium and excludes the existence of a
sizable primary component in the 7Li flux.
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(2010); E. Thébault et al., International geomagnetic refer-
ence field: the 12th generation, Earth Planets Space 67, 79
(2015); P. Alken et al., International geomagnetic reference
field: The thirteenth generation, Earth Planets Space 73, 49
(2021).

[34] M. Aguilar et al., Precision measurement of the proton flux
in primary cosmic rays from rigidity 1 GV to 1.8 TV with
the Alpha Magnetic Spectrometer on the International Space
Station, Phys. Rev. Lett. 114, 171103 (2015).

[35] M. Aguilar et al., Properties of cosmic helium isotopes
measured by the Alpha Magnetic Spectrometer, Phys. Rev.
Lett. 123, 181102 (2019).

[36] Q. Yan, V. Choutko, A. Oliva, and M. Paniccia, Measure-
ments of nuclear interaction cross sections with the Alpha

Magnetic Spectrometer on the International Space Station,
Nucl. Phys. A996, 121712 (2020).

[37] Note that the data can also be downloaded in different
formats from the AMS website https://ams02.space/sites/
default/files/publication/202404/table-s1-s42.csv and
https://ams02.space/sites/default/files/publication/202404/
table-s43.csv, the ASI cosmic-ray database at https://
tools.ssdc.asi.it/CosmicRays, and the LPSC cosmic-ray
database at https://lpsc.in2p3.fr/crdb/.

[38] D. Maurin, M. Ahlers, H. Dembinski, A. Haungs, P.-S.
Mangeard, F. Melot, Ph. Mertsch, D. Wochele, and J.
Wochele, A cosmic-ray database update: CRDB v4.1,
Eur. Phys. J. C 83, 971 (2023).

[39] M. Aguilar et al., Properties of daily helium fluxes, Phys.
Rev. Lett. 128, 231102 (2022). The He flux data up to
October 2023 including the 12.5-yr time-averaged flux
can be downloaded from https://ams02.space/sites/default/
files/publication/202404/helium-table-4BR.csv, https://
ams02.space/sites/default/files/publication/202404/helium-
table-average.csv.

[40] M. Aguilar et al., Solar modulation of cosmic nuclei over a
solar cycle: Results from the Alpha Magnetic Spectrometer,
Phys. Rev. Lett. 134, 051001 (2025). In particular, see
Fig. 3.

[41] M. Aguilar et al., Properties of cosmic deuterons measured
by the Alpha Magnetic Spectrometer, Phys. Rev. Lett. 132,
261001 (2024).

[42] G. D. Lafferty and T. R. Wyatt, Where to stick your data
points: The treatment of measurements within wide bins,
Nucl. Instrum. Methods Phys. Res., Sect. A 355, 541
(1995). We have used Eq. (6) with R̃≡ xlw.

[43] Y. Génolini, D. Maurin, I. V. Moskalenko, and M. Unger,
Current status and desired precision of the isotopic pro-
duction cross sections relevant to astrophysics of cosmic
rays. II. Fluorine to silicon and updated results for Li, Be,
and B, Phys. Rev. C 109, 064914 (2024); I. V. Moskalenko
(private communication).

[44] M. J. Boschini et al., Inference of the local interstellar
spectra of cosmic-ray nuclei Z ≤ 28 with the GalProp–
HelMod framework, Astrophys. J. 250, 27 (2020).

[45] M. S. Potgieter, Solar modulation of cosmic rays, Living
Rev. Solar Phys. 10, 3 (2013); I. G. Usoskin, A. Gil, G. A.
Kovaltsov, A. L. Mishev, and V. V. Mikhailov, Heliospheric
modulation of cosmic rays during the neutron monitor era:
Calibration using PAMELA data for 2006–2010, J. Geo-
phys. Res. Space Phys. 122, 3875 (2017). Recent data are
taken from the University of Oulu website https://
cosmicrays.oulu.fi/phi/phi.html.

[46] M. Aguilar et al., Observation of the identical rigidity
dependence of, He, C, and O cosmic rays at high rigidities
by the Alpha Magnetic Spectrometer on the International
Space Station, Phys. Rev. Lett. 119, 251101 (2017). The
12.5-yr time-averaged O flux used in this work can be
downloaded from https://ams02.space/sites/default/files/
publication/202404/oxygen-table-average.csv.

PHYSICAL REVIEW LETTERS 134, 201001 (2025)

201001-8

https://doi.org/10.1016/j.nima.2011.06.051
https://doi.org/10.1016/j.nima.2011.06.051
https://doi.org/10.1016/j.nima.2009.11.065
https://doi.org/10.1016/j.nima.2009.11.065
https://doi.org/10.1016/j.nima.2017.07.014
https://doi.org/10.1016/j.nima.2017.07.014
https://doi.org/10.1016/j.nima.2020.164169
https://doi.org/10.1016/j.nima.2020.164169
https://doi.org/10.1140/epjc/s10052-023-11395-0
https://doi.org/10.1140/epjc/s10052-023-11395-0
https://doi.org/10.1016/j.nima.2014.01.002
https://doi.org/10.1016/j.nima.2014.01.002
https://doi.org/10.1016/j.nima.2009.12.027
https://doi.org/10.1016/j.nima.2009.12.027
https://doi.org/10.1016/j.nima.2023.168434
https://doi.org/10.1016/j.nima.2023.168434
https://doi.org/10.1103/PhysRevLett.115.211101
https://doi.org/10.1016/j.nima.2016.06.125
https://doi.org/10.1016/j.nima.2016.06.125
https://doi.org/10.1109/TNS.2006.869826
https://doi.org/10.1109/TNS.2006.869826
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1111/j.1365-246X.2010.04804.x
https://doi.org/10.1111/j.1365-246X.2010.04804.x
https://doi.org/10.1186/s40623-015-0228-9
https://doi.org/10.1186/s40623-015-0228-9
https://doi.org/10.1186/s40623-020-01288-x
https://doi.org/10.1186/s40623-020-01288-x
https://doi.org/10.1103/PhysRevLett.114.171103
https://doi.org/10.1103/PhysRevLett.123.181102
https://doi.org/10.1103/PhysRevLett.123.181102
https://doi.org/10.1016/j.nuclphysa.2020.121712
https://ams02.space/sites/default/files/publication/202404/table-s1-s42.csv
https://ams02.space/sites/default/files/publication/202404/table-s1-s42.csv
https://ams02.space/sites/default/files/publication/202404/table-s1-s42.csv
https://ams02.space/sites/default/files/publication/202404/table-s1-s42.csv
https://ams02.space/sites/default/files/publication/202404/table-s43.csv
https://ams02.space/sites/default/files/publication/202404/table-s43.csv
https://tools.ssdc.asi.it/CosmicRays
https://tools.ssdc.asi.it/CosmicRays
https://lpsc.in2p3.fr/crdb/
https://doi.org/10.1140/epjc/s10052-023-12092-8
https://doi.org/10.1103/PhysRevLett.128.231102
https://doi.org/10.1103/PhysRevLett.128.231102
https://ams02.space/sites/default/files/publication/202404/helium-table-4BR.csv
https://ams02.space/sites/default/files/publication/202404/helium-table-4BR.csv
https://ams02.space/sites/default/files/publication/202404/helium-table-4BR.csv
https://ams02.space/sites/default/files/publication/202404/helium-table-4BR.csv
https://ams02.space/sites/default/files/publication/202404/helium-table-average.csv
https://ams02.space/sites/default/files/publication/202404/helium-table-average.csv
https://ams02.space/sites/default/files/publication/202404/helium-table-average.csv
https://doi.org/10.1103/PhysRevLett.134.051001
https://doi.org/10.1103/PhysRevLett.132.261001
https://doi.org/10.1103/PhysRevLett.132.261001
https://doi.org/10.1016/0168-9002(94)01112-5
https://doi.org/10.1016/0168-9002(94)01112-5
https://doi.org/10.1103/PhysRevC.109.064914
https://doi.org/10.3847/1538-4365/aba901
https://doi.org/10.12942/lrsp-2013-3
https://doi.org/10.12942/lrsp-2013-3
https://doi.org/10.1002/2016JA023819
https://doi.org/10.1002/2016JA023819
https://cosmicrays.oulu.fi/phi/phi.html
https://cosmicrays.oulu.fi/phi/phi.html
https://cosmicrays.oulu.fi/phi/phi.html
https://cosmicrays.oulu.fi/phi/phi.html
https://cosmicrays.oulu.fi/phi/phi.html
https://doi.org/10.1103/PhysRevLett.119.251101
https://ams02.space/sites/default/files/publication/202404/oxygen-table-average.csv
https://ams02.space/sites/default/files/publication/202404/oxygen-table-average.csv
https://ams02.space/sites/default/files/publication/202404/oxygen-table-average.csv
https://ams02.space/sites/default/files/publication/202404/oxygen-table-average.csv

	Properties of Cosmic Lithium Isotopes Measured by the Alpha Magnetic Spectrometer
	Introduction
	Detector
	Selection
	Analysis
	Results
	Acknowledgments
	Data availability
	References


