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Abstract. Using a stochastic simulation of a one-dimensional heliosphere we calculate galactic
cosmic ray spectra at the Earth’s orbit for different values of the heliospheric modulation strength
�. Convoluting these spectra with the specific yield function of a neutron monitor, we obtain the
expected neutron monitor count rates for different values of �. Finally, inverting this relation, we
calculate the modulation strength using the actually recorded neutron monitor count rates. We present
the reconstructed annual heliospheric modulation strengths for the neutron monitor era (1953–2000)
using several neutron monitors from different latitudes, covering a large range of geomagnetic rigid-
ity cutoffs from polar to equatorial regions. The estimated modulation strengths are shown to be in
good agreement with the corresponding estimates reported earlier for some years.

1. Introduction

Neutron monitors (NMs) have been in routine operation since the early 1950s. The
NM count rates vary in time with the 11-year solar cycle due to changes in the
heliospheric modulation of galactic cosmic rays (CR). Therefore, the NM count
rates are unambiguously related to the modulation strength, and an inverse relation
can be found (O’Brien and Burke, 1973). In this paper we calculate the relation
between NM count rates and the modulation strength and estimate the level of
modulation using a 1-D model.

A neutron monitor can effectively register neutrons from an atmospheric nu-
cleon cascade initiated by a CR particle with rigidity above some GV above the
atmosphere (see, e.g., Nagashima et al., 1989, and references therein). NM count
rates can be obtained as follows:

N(Pc, x, t) =
∞∫

Pc

G(P, t)Y (P, x) dP, (1)

where x and Pc are the atmospheric depth and the geomagnetic rigidity cutoff of the
NM location, G(P, t) is the CR rigidity spectrum in the Earth’s vicinity (i.e., after
modulation) at time t , and Y (P, x) is the specific yield function which accounts
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for the propagation of CR particles in the Earth’s atmosphere and the detection
of secondary nucleons (Nagashima et al., 1989; Clem and Dorman, 2000). The
modulated CR spectrum is

G(P, t) =
∞∫
P

GLIS(P0)M(P0, P, t) dP0, (2)

where GLIS(P0) is the local interstellar spectrum (LIS) outside the heliosphere,
i.e., before heliospheric modulation, and M(P0, P, t) is the modulation function
which gives the probability of a CR particle with initial rigidity P0 to be found
in the Earth’s vicinity with rigidity P at time t . In our study, we require that∫
M(P0, P, t) dP ≤ 1 (particles cannot be created or multiplied in the heliosphere)

and P < P0 (particles lose energy due to modulation but do not gain energy inside
the heliosphere). Here we consider only modulation of galactic CR. Anomalous
and solar CR are beyond the scope of this study.

The only time-dependent part in Equations (1) and (2) is the modulation func-
tion M(P0, P, t). A commonly used parameter of heliospheric modulation is the
modulation strength � (Gleeson and Axford, 1968) which is defined in a spher-
ically symmetric and steady-state case for the Earth’s orbit and constant V as
follows:

� =
D∫

rE

V

3κ0
dr = (D − rE)V

3κ0
, (3)

where D is the heliospheric boundary, rE = 1 AU, V and κ0 are the solar wind
velocity and the diffusion coefficient. Although very useful for theoretical consid-
erations, the direct evaluation of the modulation strength is not easy in practice.
However, indirectly, one can calculate the modulated spectra G(P,�) for a set
of fixed values of � within the framework of a heliospheric model. Then, using
Equation (1) one can estimate �(t) from the observed NM count rates N(Pc, x, t).
Finally, we note that the theory of the modulation strength � only takes into ac-
count the diffusion-convection terms of CR modulation in the heliosphere. Other
effects, e.g., particle drift and the heliospheric current sheet (see, e.g., Belov, 2000,
and references therein) also play a role in the variation of NM count rates. However,
even neglecting the latter effects, a rough estimate of the overall heliospheric state
and the effective modulation strength can be found from NM count rates under the
above assumptions (see, e.g., O’Brien and Burke, 1973).
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Figure 1. Differential energy spectra of galactic CR at the Earth’s orbit for the modulation strength
� = 200 and 1000 MV (as denoted near the curves) calculated using the stochastic simulation
method (open circles) and using the force-field approximation (dashed lines). The solid curve
(marked as LIS) denotes LIS of GCR (� = 0).

2. Heliospheric Modulation of Galactic CR

2.1. STOCHASTIC SIMULATION

Modulated CR spectra at the Earth’s orbit can be calculated by solving numerically
the Fokker–Plank equation of GCR transport in the heliosphere (Parker, 1965)
which can be written in the spherically symmetric quasi-steady form as

1

r2

∂

∂r

(
r2κ

∂U

∂r

)
− 1

r2

∂

∂r
(r2VU)+ 1

3

(
1

r2

∂

∂r
(r2V )

)(
∂

∂T
(αT U)

)
= 0, (4)

where U(r, T , t) is the cosmic-ray number density per unit interval with kinetic
energy T per nucleon, α = (T + 2 · Tr)/(T + Tr), and Tr is proton’s rest energy.
In this study, we make use of the stochastic simulation method. This method has
been introduced and described in detail by Gervasi et al. (1999) and Gervasi,
Rancoita, and Usoskin (1999). The method is based on the equivalence between
Fokker–Planck equations and stochastic differential equations (Gardiner, 1985;
van Kampen, 1992). According to the stochastic simulation method, Equation (4)
can be solved by tracing the test particle’s orbit. At each small time step �t , the
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corresponding changes in the particle’s coordinate and energy are given as follows
(Kocharov et al., 1998):

�T = −2

3

V αT

r
�t, (5)

�r = V�t + 1

r2

d(κr2)

dr
�t +G

√
2κ�t, (6)

where G is a Gaussian distributed random number with unit variance.
We have adopted the following model parameters: the size of heliosphere (ter-

mination shock) is 100 AU, and the solar wind is assumed to be radial with constant
velocity of 400 km s−1. The diffusion coefficient was taken in the form (see, e.g.,
Perko, 1987)

κ = κ0βP, P > Pc, κ = κ0βPc, P < Pc, (7)

and κ0 was replaced by � according to Equation (3). The local interstellar spectrum
of galactic CR as a function of rigidity is as follows (Burger, Potgieter, and Heber,
2000):

GLIS(P ) = 1.9 × 104P−2.78, P ≥ 7GV,

GLIS(P ) = exp(9.472 − 1.999 ln P − 0.6938(ln P)2+
+ 0.2988(ln P)3 − 0.04714(ln P)4), P < 7GV,

(8)

where P is expressed in GV, and GLIS in (GeV sr m2 s)−1. The resulting modulated
energy spectra are shown in Figure 1 for different values of �, together with LIS
(� = 0 MV). For each spectrum we calculated one million test particles. (Note
that there is an error in formula (2) of (Burger, Potgieter, and Heber, 2000) which
is corrected in our Equation (8) (Burger and Potgieter, private communication).)

2.2. FORCE-FIELD APPROXIMATION

Under some simplifying assumptions, the basic transport Equation (4) can be re-
duced to the so-called force-field approximation form (Gleeson and Axford, 1968):

∂U

∂r
+ VP

3κ

∂U

∂P
= 0. (9)

This approximation is valid (Fisk and Axford, 1969) if

r

U

∂U

∂r

 1. (10)

This partial differential Equation (9) can be solved analytically in the form of
characteristic curves (see, e.g., Kamke, 1959; Boella et al., 1998). Although the
force-field approximation is good for weak heliospheric modulation and in the
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Figure 2. Differential response function R (in arbitrary units) of a standard NM for different
modulation strengths �.

outer heliosphere, it overestimates the differential flux of low-energy cosmic rays
at a strong modulation level because the validity condition (Equation (10)) breaks
there. This is also seen in in Figure 1 as the difference between the force-field curve
and the stochastic simulation curve for � = 1000 MV at low rigidities.

3. Reconstruction of the Modulation Strength

Using the galactic CR spectra, G(P,�), and the specific yield function of a NM
station, one can calculate the expected differential response function of a standard
NM,

R(P,�) = G(P,�)Y (P ). (11)

(The standard NM is a 1-NM-64 neutron monitor at sea level.) Here we use the
specific yield function Y (P ) as given by Debrunner, Flückiger, and Lockwood
(1982) and modified in the high rigidity part by Nagashima et al. (1989). The
response function is shown in Figure 2 for different values of �. Note that the
response function at � = 0 corresponds to the case of no heliosphere. One can
see that the differential response function has a sharp peak-like structure due to
the convolution of the growing specific yield function and the sharply declining
rigidity spectrum. The peak of the response function lies in the rigidity range
of several GV and moves slowly to higher rigidities with increasing modulation
strength. The most effective rigidity range is 3–10 GV. We note that the calculated
differential response function does not depict the ‘cross-over’ phenomenon in high
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Figure 3. Calculated count rate of the standard NM as a function of modulation strength � and local
geomagnetic rigidity cutoff Pc .

energies found in the latitudinal NM surveys (Moraal et al., 1989; Popielawska
and Simpson, 1990) since the latter is driven by the 22-year magnetic cycle and
therefore cannot be reproduced in the frames of a spherically symmetric model.

The standard NM count rate can be calculated by integrating the differential
response function above the geomagnetic rigidity cutoff:

Nst(�, Pc) =
∞∫

Pc

R(P,�) dP. (12)

The resulting standard NM count rates are shown in Figure 3 as a function of the
modulation strength � and the local geomagnetic rigidity cutoff Pc. Note that the
profile of Nst at a fixed � is similar to that given by the geomagnetic latitude survey
of cosmic-ray intensity (see, e.g., Moraal et al., 1989). The count rate of a given
NM can then be easily calculated from Nst as follows:

N(�,Pc, x) = Nst(�, Pc)SNM64h(x), (13)

where S is the number of NM-64 counters, and h(x) accounts for the atmospheric
depth of the NM site if different from the sea-level. If the NM is of IGY type, a
special reduction factor should be applied (Usoskin et al., 1997):
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TABLE I

Location (geographical coordinates λ and φ and altitude h) and geomagnetic cutoff
rigidity of neutron monitor stations as well as coefficients of Equation (15).

Name φ λ h, m Pc , GV Type A B

Oulu 65.0 25.5 15 ≈ 0.8 NM64 −933.6 2.324 × 104

Climax 39.4 253.8 3400 ≈ 3 IGY −1134 2.477 × 104

Rome 41.9 12.5 60 ≈ 6.3 NM64 −2206 2.914 × 104

Huancayo −12 284.7 3400 ≈ 13 IGY −8160 4.76 × 104

SNM64 = SIGYRIGY→NM64. (14)

Equations (12)–(14) can be numerically inverted so that one can estimate the
value of modulation strength � on the basis of the measured NM count rate. For
a fixed Pc, there is a single-valued functional relation between Nst and � (see
Figure 3). Using the results of calculations presented above, we fitted the modu-
lation strength for fixed Pc as a function of the NM count rate in the following
approximate form:

� = A + B

N2
st

, (15)

where � is expressed in MV and Nst in 105 counts hr−1. It gives an approximation
of the � vs. Nst relation (Figure 3) within ±10 MV for Pc < 10 GV and within
± 50 MV for Pc > 10 GV in the range of � from 100 to 1500 MV. Parameters
A and B are shown for several selected NMs in Table I. These NMs cover a large
cutoff rigidity range from polar to equatorial regions. Using the long-term records
of selected NM count rates (Figure 4(a)), we have estimated the time profiles of
the modulation strengths according to these stations over the last decades (see
Figure 4(b)).

Using the results for the selected stations, we have calculated the weighted
mean time profile of �(t) shown in Table II and in Figure 4(b). The values of
� as calculated from the individual stations data are quite close to each other and
to the mean value (within ± 50 MV) for all years except for 1989–1991. Only
the values of � from the equatorial Huancayo station fluctuate sizably around
the mean value. We note that the calculations are less reliable for this equatorial
station (Pc = 13 GV) since its count rates are determined by the far tail of the
differential response function (Figure 2), and have only a small variation of a few
percent over the solar cycle (Figure 4(b)). This fact leads to larger uncertainties in
the modulation strength reconstruction at Huancayo than all other stations. Note
also that there is a clear rigidity cutoff dependence in 1989–1991. This period was
characterized by a series of huge Forbush decreases which suppressed CR inten-
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Figure 4. (a) NM count rates reduced to the standard observational conditions. (b) The modulation
strength� as calculated from the NM data (open symbols) and as estimated by Labrador and Mewaldt
(1997) (filled circles). The curve depicts the weight mean � (see Table II).

sity and distorted the ‘normal’ modulation evolution, leading to rigidity dependent
modulation (Usoskin et al., 1998).

4. Comparison with Other Results

There exist some earlier estimates of the modulation strength obtained for some
years from directly observed cosmic ray spectra (see Labrador and Mewaldt, 1997,
and references therein). These are shown as solid circles (LM97) in Figure 4(b).
These estimates are fairly close to the values obtained here, supporting our way
of reconstructing the modulation strength. Note in particular that the range of �
between weak modulation in 1977 and strong modulation in 1991 is almost exactly
the same for the two methods.

In order to further verify our method, we performed the following test. High-
precision measurements of the CR energy spectrum have been performed by the
Alpha Magnetic Spectrometer (AMS) experiment on board STS-91 Space Shuttle
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TABLE II

The annually averaged modulation strength � in MV.

1960 847 1970 610 1980 634 1990 971

1961 619 1971 402 1981 739 1991 980

1962 540 1972 357 1982 817 1992 623

1953 289 1963 394 1973 355 1983 663 1993 442

1954 233 1964 299 1974 369 1984 592 1994 405

1955 246 1965 251 1975 320 1985 417 1995 338

1956 420 1966 355 1976 292 1986 334 1996 305

1957 895 1967 482 1977 303 1987 319 1997 300

1958 953 1968 587 1978 387 1988 511 1998 356

1959 918 1969 656 1979 555 1989 911 1999 443

2000 643

Figure 5. CR differential energy spectra in 1998. Experimental points correspond to measurements
by AMS (Alcaraz et al., 2000). Dotted line depicts our stochastic simulation model for � = 350 MV.
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‘Discovery’ flight in June 1998 (Alcaraz et al., 2000). Our reconstruction predicts
a value of � = 356 MV for the year 1998. Figure 5 shows both the actual CR
proton spectrum (as recorded by AMS) and the calculated CR spectrum according
to our model for � = 350 MV. The two spectra are in very good agreement, giving
further support for the model.

We note that some earlier estimations of the modulation strength (see, e.g.,
Masarik and Beer, 1999) using the force-field approximation give systematically
higher values of � during periods with strong modulation. This is due to the fact
that the force-field approach overestimates CR flux in the lower energy range dur-
ing medium to strong modulation strength as discussed in Section 2.2 and shown
in Figure 1.

5. Conclusions

The reconstructed annual modulation strengths � shown in Figure 4 depict a clear
11-year cycle which varies from the minimum of about 230 MV in 1954 to the
maximum of 980 MV in 1991. We estimate the uncertainties in the reconstructed
annual values of � to be within ± 50 MV except for years 1989–1991 where
the uncertainties are about ±100 MV. We note that our reconstructions are in
good agreement with the values of � obtained earlier for some years (Labrador
and Mewaltd, 1997). We have also verified that the modeled CR spectrum agrees
well with the actual cosmic proton spectrum measured in June 1998 by the AMS
experiment (Alcaraz et al., 2000). Although the employed model of the heliosphere
is quite simple, it is well suited for long-term studies even at low-latitude cosmic
ray stations. Moreover, the reconstructed profiles of modulation strengths are ex-
tremely similar for different NMs. Some uncertainty in the reconstruction strength
may arise from the simplicity of the model, from uncertainties related to the yield
function (Pyle, 1997; Belov and Struminsky, 1997) and to the geomagnetic rigidity
cutoff (Cooke et al., 1991), from the impact of obliquely incident particles (Clem
et al., 1997), and from heavier species of GCR, etc. We note that, since the modula-
tion strength is defined for a diffusion-convection driven heliospheric modulation,
our calculations do not include drifts or transient phenomena.

Concluding, we have presented and used a method to estimate the modula-
tion strength from the NM count rates. We have reconstructed the annual values
of the modulation strengths for the neutron monitor era using data from several
NMs covering a large range of geomagnetic rigidity cutoffs. We have shown that
the reconstructed modulation strengths � are close to the experimental estimates
reported earlier for some years.



HELIOSPHERIC MODULATION DURING NEUTRON MONITOR ERA 399

Acknowledgements

This work was supported by the Academy of Finland. Data of Oulu NM are avail-
able at http://cosmicrays.oulu.fi. Data of other NMs were taken from WDC-C2.
IGU acknowledges INTAS grant YSF 00-82.

References

Alcaraz, J. et al. (AMS collaboration): 2000, Phys. Lett. B490, 27.
Belov, A. V.: 2000, Space Sci. Rev. 93, 79.
Belov, A. V. and Struminsky, B.: 1997, Proc. 25 Int. Cosmic Ray Conf., Durban 3, 201.
Boella G., Gervasi, M., Potenza, M. A. C., Rancoita, P. G., and Usoskin, I.: 1998, Astropart. Phys. 9,

261.
Burger, R. A., Potgieter, M. S., and Heber, B.: 2000, J. Geophys. Res. 105, 27447.
Clem, J. M., Beiber, J. W., Evenson, P. et al.: 1997, J. Geophys. Res. 102, 26919.
Clem, J. M. and Dorman, L. I.: 2000, Space Sci. Rev. 93, 335.
Cooke D. J., Humble, J. E., Smart, M. A., Smart, D. F., and Lund, N.: 1991, Nuovo Cimento, 14C,

213.
Debrunner, H., Flueckiger, E., and Lockwood, J. A.: 1982, 8th Europ. Cosmic Ray Symp., Rome 13,

1982.
Fisk, L. A. and Axford, W. I.: 1969, J. Geophys. Res. 74, 4973.
Gardiner, G. W.: 1985, Handbook of Stochastic Methods, Springer-Verlag, Berlin.
Gervasi, M., Rancoita, P. G., and Usoskin, I. G.: 1999, Proc. 26th Intern. Cosmic Ray Conf. Salt Lake

City 7, 69.
Gervasi, M., Rancoita, P. G., Usoskin, I. G., and Kovaltsov, G. A.: 1999, Nucl. Phys. B, Proc. Suppl.

78, 26.
Gleeson, L. J. and Axford, W. I.: 1968, Astrophys. J. 154, 1011.
Kamke, E.: 1959, Differentialgleichungen, Losungsmethoden und Losungen, Akademische Verlag,

Geest and Portig, Leipzig.
Kocharov, L., Vainio, R., Kovaltsov, G. A., and Torsti, J.: 1998, Solar Phys. 182, 195.
Labrador, A. W. and Mewaldt, R. A.: 1997, Astrophys. J. 480, 371.
Masarik, J. and Beer, J.: 1999, J. Geophys. Res. 104, 12099.
Moraal, H., Potgieter, M. S., Stoker, P. H., and van der Walt, A.J.: 1989, J. Geophys. Res. 94, 1459.
Nagashima, K., Sakakibara, S., Murakami, K., and Morishita, I.: 1989, Nuovo Cimento 12, 173.
O’Brien, K. and de P. Burke, G.: 1973, J. Geophys. Res. 78, 3013.
Parker, E. N.: 1965, Planetary Space Sci. 13, 9.
Perko, J. S.: 1987, Astron. Astrophys. 184, 119.
Popielawska, B. and Simpson, J. A.: 1990, in S. Grzeszielski and D. E. Page (eds.), Physics of the

Outer Heliosphere, Pergamon Press, Oxford, p. 133.
Pyle, K. R.: 1997, Proc. 25 Int. Cosmic Ray Conf., Durban 2, 197.
Usoskin, I. G., Kovaltsov, G. A., Kananen, H., and Tanskanen, P.: 1997, Ann. Geophys. 15, 375.
Usoskin, I. G., Kananen, H., Kovaltsov, G. A., Mursula, K., and Tanskanen, P.: 1998, J. Geophys.

Res. 103, 9567.
van Kampen, N. G.: 1992, Stochastic Processes in Physics and Chemistry, 2nd ed., North-Holland,

Amsterdam.


