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ABSTRACT

Context. Solar cycles vary in their amplitude and shape. There are several empirical relations between various parameters that link
the cycle’s shape and amplitude, foremost these of the Waldmeier relations.
Aims. The solar cycle is believed to be a result of the solar dynamo action, therefore these relations require an explanation in the
framework of this theory, which we aim to present here.
Methods. We related the cycle-to-cycle variability of solar activity to fluctuations of solar dynamo drivers and primarily to fluctuations
in the parameter responsible for the recovery of the poloidal magnetic field from the toroidal one. To be specific, we developed a model
in the framework of the mean-field dynamo based on the differential rotation and α-effect.
Results. We demonstrate that the mean-field dynamo model, which is based on a realistic rotation profile and on nonlinearity that is
associated with the magnetic helicity balance, reproduces both qualitatively and quantitatively the Waldmeier relations observed in
sunspot data since 1750. The model also reproduces more or less successfully other relations between the parameters under discussion,
in particular, the link between odd and even cycles (Gnevyshev-Ohl rule).
Conclusions. We conclude that the contemporary solar dynamo theory provides a way to explain the cycle-to-cycle variability of solar
activity as recorded in sunspots. We discuss the importance of the model for stellar activity cycles which, as known from the data of
the Mount Wilson HK project, which measures the Ca H and K line index for other stars, demonstrate the cycle-to-cycle variability
similar to solar cycles.
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1. Introduction

Solar activity has a periodic nature, but the cycle amplitude and
shape vary from one cycle to the other. This challenges the prog-
nostic abilities of solar activity models. The sunspot activity can
be quantified by using various tracers derived from observations.
These tracers show an interrelation among each other. The in-
dices characterizing the tracers can be employed to predict the
future evolution of solar activity. Waldmeier (1935) first sug-
gested this option (an inverse correlation between the length of
the ascending phase of a cycle and the peak sunspot number of
that cycle) and applied it (Waldmeier 1936) to predict the sub-
sequent cycle. Later, other relations of this kind were proposed
and called Waldmeier relations (see for a review Vitinsky et al.
1986; Hathaway et al. 2002). The nature of physical processes
underlying the Waldmeier relations is not clear (see discussion,
e.g., in Cameron & Schüssler 2008; Dikpati et al. 2008; Karak
& Choudhuri 2011). We note, that these statistical properties
of the magnetic activity also exist for other tracers related to
the sunspot activity (e.g., sunspot group number and area, see
Vitinsky et al. 1986; Hathaway et al. 2002; Karak & Choudhuri
2011), and even for the other kind of solar and stellar activity in-
dices, e.g., for the Ca II index (Soon et al. 1994). The Waldmeier

� Appendix A is available in electronic form at
http://www.aanda.org

relations are considered as a valuable test for dynamo models
(Karak & Choudhuri 2011; Pipin & Kosovichev 2011a).

Clarifying the physics underlying the Waldmeier relations
is particularly attractive to support the prognostic abilities con-
cerning solar cycle. It is believed that the cyclic solar activity
is driven by a dynamo, i.e. a mechanism that transforms the
kinetic energy of hydrodynamic motions into a magnetic one.
Many modern solar dynamo models (see, e.g., Stix 2002) as-
sume that the toroidal magnetic field that emerges on the sur-
face and forms sunspots is generated near the bottom of the
convection zone, in the tachocline or just beneath it in a con-
vection overshoot layer. This kind of dynamo can be approxi-
mated by the Parker dynamo waves (Parker 1993). The direc-
tion of the dynamo wave propagation in the framework of the
αΩ-dynamo is defined by the Parker-Yoshimura rule (Parker
1955; Yoshimura 1975), according to which the wave propa-
gates along iso-surfaces of the angular velocity. The propaga-
tion can be affected by the turbulent transport (associated with
the mean drift of magnetic activity in the turbulent media by
means of the turbulent mechanisms), by the anisotropic turbu-
lent diffusivity (Kitchatinov 2002), and by meridional circula-
tion (Yoshimura 1975; Choudhuri et al. 1995). An alternative
to the Parker’s surface dynamo waves is the distributed dynamo
with subsurface shear (e.g., Brandenburg 2005), where the dy-
namo wave propagates along the radius in the main part of the
solar convection zone (Kitchatinov 2002). Near-surface activity

Article published by EDP Sciences A26, page 1 of 11

http://dx.doi.org/10.1051/0004-6361/201118733
http://www.aanda.org
http://www.aanda.org
http://www.edpsciences.org


A&A 542, A26 (2012)

is determined by the subsurface shear. Another popular option is
the flux-transport dynamo (e.g., Choudhuri et al. 1995; Dikpati
& Charbonneau 1999).

In the context of dynamo theory, the Waldmeier relations can
be explained by invoking physical mechanisms of the solar mag-
netic field generation and a mechanism that drives variations of
the amplitude and shape of the activity cycle. For example, Pipin
& Kosovichev (2011a), hereafter PK11, showed that variations
of the α-effect amplitude may explain the correlation between
the cycle rise rate and the cycle amplitude and other types of
the Waldmeier relations as well. It was suggested (Choudhuri
1992; Hoyng 1993) that the fluctuations of the α-effect (associ-
ated with kinetic helicity fluctuations) are likely to be one of the
natural sources of the cycle parameter variations.

In addition to the statistical relations between the cycle pa-
rameters within a separate cycle there are correlations relating
the parameters in subsequent cycles, for example, the odd-even
cycle and the last cycle period-amplitude effects. These effects
are closely related to the memory of the dynamo processes and to
the strength of the saturation processes, which damp deviations
of the cycle parameters from the reference state characterizing
the cycle attractor (Ossendrijver & Hoyng 1996; Ossendrijver
et al. 1996).

It was argued (Choudhuri 1992; Hoyng 1993), that a dozen
percent is a reasonable estimate for the noise component of
the α-effect. Previous calculations (see the above cited papers)
showed that a straightforward application of the idea with the
vortex turnover time and the vortex size as the correlation
time and length for the α-fluctuations needs fluctuations much
stronger than the mean α. On the other hand, the results of di-
rect numerical simulations (e.g., Brandenburg & Sokoloff 2002)
and results of current helicity (related to α) observations in so-
lar active regions (e.g., Zhang et al. 2010) suggest that the cor-
relation time for α-fluctuations can be comparable to the cy-
cle length and the correlation length comparable to the extent
of the latitudinal belts. Using these results, Moss et al. (2008)
and Usoskin et al. (2009b) showed that an α-noise on the order
of few dozen percents is sufficient to explain the Grand min-
ima of solar activity. The aim of this paper is to examine the
result of α-fluctuations in the statistical properties of the solar
cycle including the Waldmeier relations and the odd-even cycle
effect.

We chose a particular model for the solar cycle in which
α-fluctuations are introduced. Of course, it is impractical to try
all available models to learn which one is better to obtain the re-
lations under discussion, but we select below the model among a
relative wide choice of the models that gave better results in the
preliminary simulations (Pipin & Sokoloff 2011).

2. Basic equations
2.1. Dynamo model

The dynamo model employed in this paper has been described in
detail in Pipin & Kosovichev (2011a,b). We study the standard
mean-field induction equation in perfectly conductive media:

∂B
∂t
= ∇ × (E+U × B) ,

where E = u × b is the mean electromotive force, with u, b
being the turbulent fluctuating velocity and magnetic field, re-
spectively; U is the mean velocity (differential rotation), and the
axisymmetric magnetic field is

B = eφB + ∇ × Aeφ
r sin θ

,

where θ is the polar angle. The expression for the mean electro-
motive force vector E is given by Pipin (2008). It is expressed as
follows:

Ei =
(
αi j +

(
1 + ξγ

)
γi j

)
B −

(
1 + ξη

)
ηi jk∇ jBk. (1)

Tensor αi j represents the alpha effect. It includes the hydrody-
namic and magnetic helicity contributions,

αi j = Cα (1 + ξα)ψα(β) sin2 θα(H)
i j + α

(M)
i j , (2)

where the hydrodynamical part of the α-effect is defined by α(H)
i j ,

ξα,η,γ defines the noise, ψα (β) is the quenching function, where

β =

∣∣∣B∣∣∣
u′

√
4πρ

, u′ is the convective rms velocity. The reader

can find expressions for the quenching function, ψα and α(H)
i j in

Appendix A.
Contribution of the small-scale magnetic helicity χ = a · b

(a is a fluctuating vector-potential of the magnetic field) to the
α-effect is defined as α(M)

i j = C(χ)
i j χ, where the coefficient C(χ)

i j
depends on the turbulent properties of the medium and on the
parameter characterizing the influence of the Coriolis force on
convection. Expression for C(χ)

i j is the same as in PK11 and is
given in Appendix A, as well. Other parts of Eq. (1) represent
the effects of turbulent pumping, γi j, and turbulent diffusion, ηi jk.
We give their expressions in Appendix A.

The nonlinear feedback of the large-scale magnetic field to
the α-effect is described as a combination of an “algebraic”
quenching by the function ψα (β), and a dynamical quenching
due to the magnetic helicity conservation constraint. The mag-
netic helicity, χ, subject to a conservation law, is described
by the following equation (Kleeorin & Rogachevskii 1999;
Subramanian & Brandenburg 2004):

∂χ

∂t
= −2

(
E·B

)
− χ

Rχτc
+ ∇ ·

(
ηχ∇χ̄

)
, (3)

where τc is a typical convection turnover time. Parameter Rχ

controls the helicity dissipation rate without specifying the na-
ture of the loss. It seems reasonable that the helicity dissipation
is most efficient in the near surface layers because of a strong de-
crease of τc toward the surface. The last term in Eq. (3) describes
the diffusive flux of the magnetic helicity (Mitra et al. 2010).

We used the solar convection zone model computed by
Stix (2002), in which the mixing-length is defined as � =

αMLT

∣∣∣Λ(p)
∣∣∣−1

, where Λ(p) = ∇ log p is the pressure variation
scale, and αMLT = 2. The turbulent diffusivity is parametrized

in the form, ηT = Cηη
(0)
T , where η(0)

T =
u′�
3

is the characteristic

mixing-length turbulent diffusivity, � is the typical correlation
length of turbulent flows, and Cη is a constant to control the effi-
ciency of the large-scale magnetic field dragged by the turbulent
flows. Currently, this parameter cannot be introduced into the
mean-field theory in a consistent way.

In this paper we use Cη = 0.05. The fairly low turbulent dif-
fusivity both due to low Cη � 1 and due to quenching of the
turbulent difffusivity coefficient for the fast-rotation regime in
the depth of the solar convection zone, where Ω∗ = 2Ω0τc � 1,
provides the correct value of the cycle period in the model. Note
that in the fast-rotation regime the turbulent magnetic diffusiv-
ity is dominated by the anisotropic component of the diffusiv-
ity tensor along the rotation axis. This component is growing in
the intermediate range variations of Ω∗. Currently, the problem
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Fig. 1. Typical time-latitude and time-radius (at the 30◦ latitude) diagrams of the toroidal field (gray scale), the radial field (contours at left panel)
and the poloidal magnetic field (which is drawn by the contours of the vector-potential at the right panel) evolution in the 2D1α model (see
Table 1). The toroidal field averaged over the subsurface layers in the range of 0.9−0.99 R	, the radial field is taken at the top of the convection
zone.

Table 1. Parameters of the dynamo models.

Model ηχ/ηT Cα/Rχ B0 Noise σ
2D1α 10−5 0.03/200 800 ξα 0.2
2D1η -/- -/- -/- ξη 0.04
2D1αL -/- -/- -/- exp(ξα) logσ(ξα)

with Cη � 1 has no satisfactory resolution within the dynamo
theory. In the model we used an analytical fit to of the differen-
tial rotation profile proposed by Antia et al. (1998). It was given
in our earlier papers (see Fig. 1a in Pipin & Kosovichev 2011a;
Pipin & Sokoloff 2011).

We matched the potential field outside and the perfect con-
ductivity at the bottom boundary with the standard boundary
conditions. For magnetic helicity, similar to Guerrero et al.
(2010) we put ∇rχ̄ = 0 at the bottom of the domain and χ̄ = 0 at
the top of the convection zone.

The parameters of the model are summarized in the Table 1,
where ηχ/ηT is the ratio between the turbulent magnetic helic-
ity diffusivity and the turbulent magnetic diffusivities; the pa-
rameter Rχ controls the helicity dissipation rate; B0 is a typical
strength of the toroidal magnetic field controlling the sunspots
number parameter in the 2D models; the column “noise” defines
the fluctuating parameter and σ is the standard deviation of the
Gaussian noise in the model. The lognormal noise in the model
2D1αL was symbolically denoted as exp(ξα).

The left panel in Fig. 1 shows a typical time-latitude diagram
in the model 2D1α for the toroidal magnetic field evolution aver-
aged over the subsurface layers 0.9−0.99 R	 and the radial mag-
netic at the top of the integration domain. The right panel shows
the time-radius diagram for the toroidal an poloidal components
of the large-scale magnetic field evolution at 30◦ latitude. Note
that the geometry of the poloidal magnetic field is drawn by iso-
contours of the toroidal vector-potential.

2.2. Noise model

In Eq. (1), the noise, ξα,η,γ, contributes to the hydrodynamic part
of the α-effect (see, Eq. (2)), to the turbulent diffusion, and to the
turbulent pumping. Following Usoskin et al. (2009b) the model
employs the long-term Gaussian fluctuating ξα,η of the low am-
plitude with rms deviation given in the Table 1 (last column).
It is expected from general consideration that, for the low am-
plitude fluctuations, ξη is an order of magnitude smaller than ξα
(because α(H) ∼ u′ and ηT ∼ u′2). To examine the long-term dy-
namics of the model with regard to the specific statistical distri-
bution of the noise we included the results for a model with the

Fig. 2. Typical realization of the fluctuating part of the α-effect (left
panel) and its probability distribution function (solid line, right panel).
There we show the PDF for the lognormal fluctuations as well (dashed
line).

lognormal distribution of ξα (see, Sect. 3.2.3). In this case the
parameters of the lognormal distribution were computed from
the corresponding Gaussian distribution. Random numbers were
generated using the Numerical Recipes Fortran subroutine “gas-
dev”. The amplitudes of the fluctuations were restricted to 2σ.
A realization of the lognormal fluctuations was prepared before
the run. We took the input parameters from the realization of the
Gaussian distribution fluctuations, which were computed with
taking into account the 2σ cut-off. The fluctuation renewal time
was constant and equal to the period of the cycle in the model.
Figure 2 shows a typical realization for the Gaussian fluctua-
tions of the α-effect, its probability distribution function (PDF),
and the PDF of the generated lognormal fluctuations.

We considered the amplitude of the standard deviation of the
α-coefficient as an input parameter. We chose this quite arbitrary
based on the following crude estimation. The total number of
cyclones in the solar convection zone may be on the order of
N = 2 × 103, see, e.g., Miesch et al. (2008), who found that the
solar convection vertical vorticity spatial spectrum is flat and has
a maximum at about � ≈ 140, where � is the spatial wavenum-
ber. If α ≈ 0.1u′c then the 1/

√
N fraction of the magnitude fluc-

tuations in velocity corresponds to about 20% of the fluctuations
in α. We stress that this very crude estimate needs a support from
detailed numerical modeling and observations, which are, how-
ever, obviously out of the scope of this paper. The Gaussian fluc-
tuations were cut off on the 2σ-level to exclude a possible effect
of rare and very strong fluctuations, which are hardly associated
with Waldmeier relations. It can be important in principle for
Grand minima statistics. We did not address the latter possibility
systematically, but tested the lognormal fluctuations to study the
impact of the PDF tail on the long-term solar cycle variations.
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2.3. The sunspot cycle model and the Waldmeier relations

Here, we define the Waldmeier relations as a set of the mean
properties of the sunspot cycle including relations between the
rise rate of the cycle and its amplitude and the relation “period-
amplitude”. In the original form the Waldmeier relation reads as
a link between the period of a cycle and amplitude of the sub-
sequent cycle. Other relations like this (rise time and amplitude;
rise time and decay time) are sometimes referred to Waldmeier
relations, as well. These relations were considered in PK11 and
in our previous paper (Pipin & Sokoloff 2011). The ratio of the
decay and rise rates is known as the shape of the cycle. Amother
relation presented in literature is the so-called Gnevyshev-Ohl
rule (e.g. Charbonneau et al. 2007), which provides a positive
correlation between the amplitudes or intensities of 2Nth and
2N + 1th cycles.

The amplitude of a cycle is defined as the difference between
the maximum sunspot number and the sunspot number in the
preceding minimum. The latter can differ from zero because of
the overlap of subsequent cycles. The cycle period is equal to the
time between the subsequent minima. The rise time of a cycle
is defined by the difference between the moment of the cycle
maximum and the moment of the preceding minimum. The rise
rate is defined as the ratio between the difference of the sunspot
numbers at maximum and minimum of the cycle and the rise
time of the cycle. There is similar definition for the decay rate of
the cycle.

Following to PK11 we relate the sunspot number with the
toroidal magnetic fields in the near-surface layer. In PK11 the
instant sunspot number was defined using the maximum of
the toroidal magnetic field strength, which was taken over all lat-
itudes and averaged over the surface layer from 0.9 to 0.99 R	.
Then, this value was related to the sunspot number (SSN) via the
three-halves law proposed by Bracewell (1988) to relate SSN in
the cycle with a “linear” sinusoidal part of the SSN variation.
The relation between the toroidal field and SSN, which was in-
troduced in PK11 has an undesirable property of giving non-zero
SSN at the minimum of a cycle and strong variations of the min-
ima amplitudes with variations of the α-effect parameters (see
Fig. 6 there).

Here, we examined another possibility (also see Pipin &
Sokoloff 2011). We assumed that sunspots are produced from
the toroidal magnetic fields by means of the nonlinear instabil-
ity, and avoided to consider the instability in details. To model
the sunspot number W produced by the dynamo we used the fol-
lowing ansatz:

W (t) = CW 〈Bmax〉SL exp

(
− B0

〈Bmax〉SL

)
, (4)

where 〈Bmax〉SL is the maximum of the toroidal magnetic field
strength over latitudes averaged over the subsurface layers in the
range of 0.9−0.99 R	; B0 is a typical strength of the toroidal
magnetic field sufficient to produce the sunspot, hereafter we
put B0 = 800 G; CW is the parameter to calibrate the mod-
eled sunspot number relative to observations. Hereafter we put
CW = 1. Results by Pipin & Sokoloff (2011) showed that simi-
lar to PK11 the Waldmeier relations can be reproduced with the
Wolf number definition (Eq. (4)). The exponential dependence
in Eq. (4) yields the Waldmeier relations at smaller variations
of the α-effect compared to those in PK11, where the Bracewell
law was used. Also, we find that the mean-field dynamo model
with relation (4) reproduces the long-term variation of the cycle
much better than in the case of the three-halves law.

2.4. Observational data set

Although the series of group sunspot numbers covers 400 years
since 1610 AD (Hoyt & Schatten 1998), giving a measure of the
temporal variability of solar activity, parameters of the solar cy-
cle such as its total length and ascending/descending phases are
not reliably known for the earlier times. Solar cycle parameters
can be more or less reliably evaluated since 1750 or, with some
caveats, after the end of the Maunder minimum in 1712 (Usoskin
2008). However, even in this case an uncertainty related to the
potentially lost solar cycle in the last decade of 18-century (e.g.
Usoskin et al. 2003, 2009a) still exists. The Sun was amaz-
ingly well observed during the Maunder minimum, especially
in its second half (Ribes & Nesme-Ribes 1993), but the solar cy-
cle was suppressed below the threshold for sunspot formation,
which led to unclear dynamo manifestations. Cycles before the
Maunder minimum are not well known (Vaquero et al. 2011)
and their shapes cannot be obtained. Therefore, only the period
of 1750–2009 AD, which includes 23 full solar cycles in the of-
ficial numeration, can be analyzed here. Statistical properties of
the long-term variations of the solar cycle can be estimated on
the base of the reconstructed data set proposed by Usoskin et al.
(2004) and Solanki et al. (2004).

There are several synthetic series that present solar cyclic
variability for the times before the beginning of the sunspot
series. They are based on a fit of a prescribed mathematical
model to fragmentary non-systematic qualitative proxy data of
naked-eye sunspot or auroral observation (e.g., Schove 1955;
Nagovitsyn 1997). These synthetic series do not pretend to be
quantitative reconstructions of solar activity and cannot be used
to analyze of solar cycle parameters, which are explicitly pre-
scribed in the model rather than reconstructed.

Although sunspot activity is greatly suppressed during
Grand minima, the solar dynamo continues to operate at a re-
duced level. For example, an analysis of sunspot and aurora
(Křivský & Pejml 1988) data during the Maunder minimum sug-
gests that the dominant periodicity was shifted from the 11 years
to 20–22 years (Silverman 1992; Usoskin et al. 2001). Data of
the cosmogenic isotope 14C also confirm longer cycles during
the Maunder minimum (Peristykh & Damon 1998; Miyahara
et al. 2006b). A similar lengthening of the solar cycle during
a Grand minimum has been observed, using the 14C data, also
for the Spörer minimum at the turn of the 15–16 th centuries
(Miyahara et al. 2006a). However, the parameters of individual
solar cycles cannot be recovered for the Grand minima periods,
only the statistical features.

Taking into account all the above information, we com-
pared simulations with the monthly smoothed sunspot number
(SSN) data set from the SIDC (Solar Influence Data Center),
which starts at 1750. The data set was additionally smoothed by
means of the Wiener filter. To compute the wavelet spectra of
the sunspot data set, we used the data set provided by Hoyt &
Schatten (1998) and Solanki et al. (2004).

3. Results

We performed long-term simulations for the time interval of
about 104 years (i.e. the time-span of the longest reconstruc-
tion of the solar cycle history (Solanki et al. 2004) using our
basic model. To compare the results obtained with other dynamo
models see Pipin & Sokoloff (2011). The simulated time data set
for W(t) is shown in Fig. 3 (top panel). It shows events with the
extended period of the high- and low magnetic activity.
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Fig. 3. Top, the simulated W(t) in our dynamo model. Bottom, the Waldmeier relations for the model; squares show data for individual cycles,
while the solid line gives the correlation, the dashed line shows these relations obtained from the actual SSN data.

3.1. The Waldmeier relations and the odd-even cycle effect

First of all, we divided the set into separate cycles to look for the
Waldmeier relations (rise rate to amplitude and period to ampli-
tude) and the odd-even cycle effect (Gnevyshev-Ohl rule). The
results are shown in the bottom panel of Fig. 3, which depicts
spreads of simulated points over corresponding planes, and their
linear fits (solid lines). The dashed lines show the correlations
computed on the base of the actual sunspot data. The results for
the rise rate to decay rate relation is similar to that for the rise
rate to amplitude relation and can be found in Pipin & Sokoloff
(2011). Data concerning the linear fits shown in Fig. 3 are given
in Table 2, where the first four rows contain information for the
mean and variance (standard deviation) for the parameters of the
sunspot cycles in the different data sets. The shape of the cycle is
defined as the ratio between the decay rate and the rise rate of the
cycle. The last five rows show linear fits with the mean-square
error bar and the correlation coefficient for the Waldmeier rela-
tions and for the odd-even cycle effect, (I) marks the effect that
is calculated on the base of the SN integrated over the cycle and
(II) marks the effect that is calculated on the base of the cycle
amplitudes.

We see from Fig. 3 that the model reproduces the Waldmeier
relations and the Gnevyshev-Ohl rule reasonably well. Note that
the dispersion of both the simulated and observational data from
the linear fit of the rise rate to amplitude (as well as that one
for rise rate to decay rate Pipin & Sokoloff 2011) are much
lower than that for the the period to amplitude relation and

Table 2. Parameters of the cycle given by the dynamo medel 2D1α and
by the monthly smoothed actual sunspot number (SSN).

2D1α SSN
Period 11.07 ± 1.08 11.01 ± 1.12
Amplitude 103.3 ± 40.5 108.2 ± 38.1
Rise time 4.06 ± .77 4.32 ± 1.07
Shape .59 ± 0.15 .69 ± 0.31
Rise rate – 3.3x + 14.8 ± 6, 2.9x + 33.2 ± 8.9,
amplitude 0.98 ± 0.001 0.97 ± 0.01
Period – −17.4x + 277.6 −23.6x + 368.5
amplitude ± 27.5, ± 28.0,

−0.54 ± 0.02 −0.68 ± 0.12
Rise time – −43.1x + 259.4 −26.7x + 224.
amplitude ± 24.2, ± 25.,

−0.67 ± 0.02 −0.76 ± 0.1
Odd – Even(I) 0.68x + 155. ± 136., 0.35x + 235 ± 145,

0.67 ± 0.03 0.33 ± 0.3
Odd – Even(II) 0.58x + 35.6 ± 26.6, 0.35x + 62.5 ± 32.3,

0.58 ± 0.03 0.42 ± 0.28

Gnevyshev-Ohl rule. We composed (see Fig. 2, bottom right)
a relation of the rise time to amplitude (i.e. using the quantity
inverse to the rise rate) to learn that the dispersion looks more or
less like that for the relation period-amplitude. As discussed by
Cameron & Schüssler (2008), a relation rise time to amplitude
has higher dispersion than that for the rise rate to amplitude. We
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Fig. 5. Left, the phase relation between the cycle amplitude and the strength of the dipole component of the dynamo generated magnetic field at the
surface. Middle, correlation between dipole component at the cycle minimum and the amplitude of the subsequent cycle. Right, correlation between
the amplitude of the cycle and the dipole component at the subsequent cycle minimum. The circles mark the results of the WSO observations and
the SSN data.

conclude that the quality of fitting substantially depends on the
presentation method chosen to illustrate a relation.

The results concerning the even-odd effect are shown in
Fig. 4. Note that the original formulation of the Gnevyshev-Ohl
rule is calculated on the basis of the sunspot number (SN) inte-
grated over the cycle (Fig. 4 right), while the left panel of the
figure shows the effect calculated for the cycle amplitude. We
see from the figure that the model reproduces observations in
both cases more or less reasonably well, however, the slope sub-
stantially depends on the definition of the Gnevyshev-Ohl rule.

It is expected that the strength of the sunspot cycle de-
pends on the strength of the poloidal field of the Sun in the
preceding solar minimum. Following this idea, Schatten et al.
(1978) suggested using the strength of the Sun’s polar field
for the cycle prediction. Recently, this idea was exploited in
the Babcock-Leighton type model, see the review by Hathaway
(2009).

Figure 5 illustrates the phase relation between the amplitude
of the sunspot cycle and the strength of the dipole component of
the dynamo-generated magnetic field. There we show the back-
ward and forward correlation between these parameters of the
model, taking the strength of the dipole component at the cy-
cle minimum. The strength of the dipole component refers to
the surface, and it was calculated as the first coefficient in the
spectral decomposition of the magnetic potential A. The back-
ward correlation has the correlation coefficient 0.86 ± 0.01 and
approximation 145.4x − 74. ± 13. The forward correlation be-
tween the cycle amplitude and the strength of the dipole compo-
nent of the dynamo-generated magnetic field at the subsequent
minimum has the correlation coefficient 0.64 ± 0.01 and ap-
proximation 0.004x+ 0.8 ± 0.12. This relation has a higher dis-
persion than the results for the fluctuation of the α-effect. For

comparison we added several points obtained from the WSO po-
lar magnetic field observations (Svalgaard et al. 1978; Hoeksema
1995).

3.2. Other perspectives

The main aim of this paper is to demonstrate that fluctuations
of the α-coefficient provide an option to explain short-term dy-
namics of solar activity cycle such as Waldmeier and similar re-
lations. We note, on one hand, that this idea can be useful to
explain more long-term dynamics and, on the other hand, that α
is far from being a unique transport coefficient in dynamo equa-
tions, which can be noisy. These noisy transport coefficients can
obviously contribute the activity cycle dynamics. Of course, a
detailed investigation of these options is far beyond the scope
of this paper, but we present below some exploratory results in
these directions.

3.2.1. η-fluctuations vs. α-fluctuations

Obviously, fluctuations of the α-coefficient affect the solar ac-
tivity evolution together with fluctuations of other dynamo gov-
erning parameters. Comparing the relative role of various fluc-
tuations in the solar cycle variations is beyond the scope of this
paper and we restrict presentation by comparison of the effect of
η- and α-fluctuations only.

Choudhuri (1992) addressed this point and suggested the fol-
lowing relation for the fractional growth rate Γ of perturbations
in the dynamo as a result of the perturbation of the α-effect and
the turbulent diffusion (in our notations):

Γ =
P

TD

⎛⎜⎜⎜⎜⎝−ξη + P2

T 2
D + P2

ξα

⎞⎟⎟⎟⎟⎠ ,
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Fig. 6. Cycles distribution for the 1500 yr data set from 2D1α model
(ξα-noise), left and 2D1η model (ξη-noise), right.

where P is the period of the cycle and TD is the typical diffu-
sive time of the dynamo. This relation gives a hint that the fluc-
tuations of the turbulent diffusivity are relatively more signifi-
cant for the dynamo perturbation provided the values ξα/α and
ξη/η are comparable. The point is, however, that α ∼ u while
η ∼ u2, where u is the turbulent velocity. We performed sim-
ulations and present their results in Fig. 6 for our model with
α-fluctuations of 20% (Fig. 6 left) and 4% η-fluctuations (Fig. 6
right), which corresponds to the comparable fluctuations in u.
We see in Fig. 6 that the α-fluctuation looks more pronounced
than η-fluctuations.

We examined the influence of the pumping effect fluctua-
tions on the cycle variations. The parameters of the model are
the same as for 2D1α, except that we let the α-effect be constant
and ξγ has the same characteristics as ξα in 2D1α. It is found that
for a model with ξγ fluctuations the cycle variations look very
similar to the model 2D1η. The model demonstrates that the cy-
cle amplitude variations are approximately half of those for the
2D1α model. Variations of the period are also quite small, like
in the model 2D1η.

3.2.2. Resonance effects

Our base model exploits the memory time of α-fluctuations
equal to the nominal cycle length. A natural worry is that a res-
onance could participate in the Waldmeier relations simulated
while the correlation time of the α-coefficient in solar convec-
tion can be different from the cycle length, thus avoiding res-
onances. Note that the resonance effects for dynamo waves is
almost not addressed in scientific literature (Gilman & Dikpati
2011). We varied the correlation time and calculated the cycle
amplitude variance (Fig. 7). Some peaks are visible in this fig-
ure, which may indicate resonance effects, however, the renova-
tion times to which they are attached vary from one run to the
next. On the other hand, the results given in Fig. 5 (right) suggest
that the resonance effects may depend on the phase synchroniza-
tion between the fluctuations of the α-effect and the cycle vari-
ations. Therefore, we may anticipate that the fluctuations on the
descending phase of the solar cycle are more effective than those
on the rise phase of the sunspot cycle. Bearing in mind the dis-
tributed character of the dynamo model, we conclude that the
resonance phenomena that possibly play a role here need to be
addressed separately (cf. Gilman & Dikpati 2011).

3.2.3. Long-term dynamics

We move from the dynamics activity cycles, viz. the timescale
of several dozens cycles where the Waldmeier relations and the
even-odd relation is applicable, to the much longer term history
of the solar cycle on timescales of up to 104 years. Here we can-
not discuss such fine details as the Waldmeier relations because

Fig. 7. Dependence of the cycle amplitude on the noise renewal time.
Three runs with various renovation times are shown with solid, long-
dashed, and short-dashed lines respectively.

the available data does not trace the cycle shape. The available
isotopic data (we refer to the reconstruction by Solanki et al.
2004) only traces the evolution of the cycle-averaged quantities.
Because the present dynamo model was adopted (via tuning the
parameters Cα,Rχ and ηχ) to reproduce short-term dynamics, we
expect that the long-term dynamics will be reproduced not as
well.

Figure 8 shows the global wavelet power spectra for the
sunspot data and for the model data sets. The reader can find the
definition of the concept of wavelet power spectra and its discus-
sion in the context of the solar activity studies in, e.g., Frick et al.
(1997a). The data were processed with the standard MATLAB
wavelet toolbox using the standard Morlet wavelet basis. The
global wavelet power spectra were obtained by integrating the
spectra in the time domain (see Eq. (10) in the cited paper). Each
spectrum was normalized relative to its maximum magnitude. To
illustrate the role of the α-effect fluctuation statistics we show
the results for the model with the log-normal noise ξα. The mean
and variance of the log-normal noise ξα corresponds to the mean
and variance of the Gaussian noise ξα in the model 2D1α. The
short-term scales spectra look qualitatively similar in all three
sets. The principal difference is the ratio between the spectrum
amplitude for the basic cycle (at 11 years) and the amplitude
of the second maximum at the period ≈200 years. This ratio is
greater in the sunspot data set. All three data sets show the long-
term variations with periods of about 100 years, which is usually
identified with the Gleisberg cycle.

The dynamics on the scale of millennia looks similar for all
three data sets, see Fig. 8 (right). The model with the log-normal
noise does not show the ordered long-term variations on this time
scale, while the model 2D1α and the reconstruction data show
evidence for the variations with period about 6000 years. It is
unclear, however, if this result is statistically stable.

An important statistical property of the dynamo is the occur-
rence probability of high- and low-activity episodes. Following
Solanki et al. (2004), we defined the high-activity episode as
having the average S N ≥ 50 (the minimal averaged SN was
higher than 50, min〈(S N)〉 ≥ 50) and similar for the low-activity
episode occurs when max〈(S N)〉 ≤ 50. Then, we counted the
number of episodes for each time scale with the high and low
activity episodes and computed the probability distributions as a
function of the time scale. The results are shown in Fig. 9. We
find that the dynamo models show a somewhat higher proba-
bility for the high-activity episodes than the reconstruction data
set. Their probability profiles looks similar in all three cases and
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Fig. 8. Wavelet spectra of the simulated and observational sunspot number data sets. The left panel corresponds to short time scales of up to 300 yr.
The solid line shows the results for the 2D1α model, the dashed line is computed on the base of the data set provided by the Hoyt & Schatten
(1998) reconstruction and the dash-dotted line shows the results for the 2D1αL model based on the log-normal fluctuations of the α-effect. The
right panel is similar to the left one, but for longer time scales. The dashed line is computed on the basis of the reconstruction provided by Solanki
et al. (2004). The spectra were normalized relative to their maxima for clarity.

Fig. 9. Probability of the high- and low-activity episodes for the given
duration (see definition in the text). The thin lines show the results for
the high-activity episodes, and the bold lines the low-activity episodes.
The solid lines (thin and bold) show the results for 2D1α model, the
dotted lines show the results for the 2D1αL model and the dashed lines
show the same for the reconstruction data set provided by Solanki et al.
(2004).

show a significant drop in the pass from decadal to the centennial
time scale. The probability of a high-activity episode to occur
decreases exponentially with time. The probability of the oppo-
site event, i.e., a minimum with the average SSN below 50, in-
creases accordingly. Note that the end of a high-activity episode
does not necessarily imply a low-activity epoch. It could be a lo-
cal minimum with a duration of less than 20 years (the 11-year
interval was used for averaging). A similar behavior is found for
the probability of the low-activity episode in the dynamo mod-
els that show a significant drop of the probability profiles around
half-millennium. The reconstruction data set is very different in
this aspect. It seems that it is not possible to explain all the basic
properties of the sunspot cycle variations as the result of fluctu-
ations of the α-effect.

Fig. 10. Probability that the high-activity episode will be ended by a
low-activity episode of a given length, 30 years length – bold lines and
50 years length – thin lines. The solid lines show the results for 2D1α
model, the dotted lines show the results for the 2D1αL model based on
the log-normal fluctuations of the α-effect, and the dashed lines show
the results for the reconstruction provided by Solanki et al. (2004).

Can one predict that the high-activity episode will be ended
with the low-activity episode of the given length? Figure 10
shows the results for the low-activity episodes of 30 and
50 years. The given estimates can be biased because of the un-
presentable statistics for these events.

4. Discussion and conclusions

We have studied the impact of low-amplitude Gaussian fluctu-
ations of the α-effect on the statistical properties of the mag-
netic dynamo cycle, such as the Waldmeier relations and the
Gnevyshev-Ohl rules. The dynamo model includes long-term
fluctuations of the α-effect and employs two types of a nonlinear
feedback of the mean-field on the α-effect, including algebraic
quenching and dynamic quenching due to the magnetic helicity
generation. The general properties of the dynamo, such as the
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direction of the toroidal magnetic field drift, the polar magnetic
field sign reversal at the maximum of a cycle, etc., are consistent
with observations.

Our model does not include the meridional circulation ef-
fect, which is advocated by the Babcock-Leighton and the flux-
transport type dynamo models (e.g., Choudhuri et al. 1995;
Dikpati & Charbonneau 1999; Dikpati et al. 2008). It was shown
that a part of the Waldmeier relations can be possibly explained
by a specially tuned flux-transport model that considers fluctu-
ations of the meridional circulation speed (Karak & Choudhuri
2011). Still, observational constraints on the distribution of the
meridional circulation inside the convection zone are not very
strong because we have measurements for the surface. The an-
gular momentum balance in mean-field models supports the cir-
culation pattern, which has a deep circulation stagnation point
and a strong concentration of the velocity speed towards the bot-
tom and the top boundaries of the solar convection zone (e.g.,
Kitchatinov & Olemskoy 2011). Yet, most of the flux-transport
models (including Karak & Choudhuri 2011) use a very different
circulation pattern. Following this argumentation, we postpone a
more complete study of the effects of the meridional circulation
fluctuations to the future.

We showed, confirming the previous findings of Pipin &
Kosovichev (2011a) and Pipin & Sokoloff (2011), that varia-
tions of the α-effect amplitude result in variations of the cycle
amplitude and period. Taking into account random fluctuations
of the α-effect, we calculated statistical properties relating the
cycle amplitude, the cycle shape, the rise time, etc., on the ba-
sis of the simulated SN data set covering a period of more than
10 000 years. Our results agree well with observations for the
Waldmeier relations and the Gnevyshev-Ohl rules.

From the qualitative point of view these results were antici-
pated from the earlier analysis of the helicity fluctuation effect in
the dynamo given by Choudhuri (1992) and Hoyng (1993; see,
also Ossendrijver & Hoyng 1996; Ossendrijver et al. 1996; Moss
et al. 2008; Usoskin et al. 2009b). Our results presented in Fig. 5
about the correlation of the polar dipole field and the cycle am-
plitude and the results for the Gnevyshev-Ohl rules suggest that
the Waldmeier relations can be understood by considering the
general properties of the magnetic field generation processes,
which are involved in the dynamo.

Our model shows a good correlation (with low variance) be-
tween the strength of the polar dipole magnetic field in the cy-
cle minimum and the amplitude of the subsequent cycle. This
results from the deterministic process of the toroidal magnetic
field generation by the differential rotation from the large-scale
poloidal magnetic field. This correlation is often used for the
cycle prediction (Hathaway 2009) by Babcock-Leighton type
dynamo models and it is for the first time demonstrated in the
mean-field dynamo. The rise rate of the sunspot cycle depends
on the differential rotation and the amplitude of the poloidal
field. Therefore, the correlation between the rise rate and am-
plitude of the cycle is a derivative property and is a consequence
of the link between the polar dipole magnetic field in the cycle
minimum and the strength of the toroidal field in the subsequent
cycle.

Furthermore, following the general idea of Zaslavsky (1978)
(cf., Hoyng 1993; Charbonneau et al. 2007), we can inter-
pret the Gnevyshev-Ohl rule as evidence that the solar cycle
is a nonlinear self-excited oscillation that tends to preserve
the property of the attractor under random perturbations. The
amplitude and phase of the subsequent cycles are related by
the so-called Zaslavsky map. The strength of the link between
the parameters of the subsequent cycles is controlled by the
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Fig. 11. Time series of the simulated sunspot number for the extended
2D1α model involving the fluctuations of the alpha effect and the mag-
netic feedback on the differential rotation.

fluctuation amplitude and by the perturbation’s decrement. The
latter strongly depends on the nonlinear mechanisms involved in
the dynamo. To examine this idea we made additional simula-
tions with a lower helicity dissipation rate (high Rχ) and found
that the correlation coefficients between the parameters of the
subsequent cycle increase with increasing Rχ. Therefore the link
between the odd and even cycles, and the period to amplitude
correlation in subsequent cycles can be considered as evidence
for the fluctuation impact on the dynamo and evidence for non-
linear damping of these perturbations in the dynamo. This con-
clusion needs to be investigated in more detail especially by
comparing the results of the α-effect and meridional circulation
fluctuations.

Long-term variations of the magnetic cycle in the dynamo
can be induced in different ways. Two main mechanisms can be
identified: nonlinear deterministic chaos and an effect of fluctu-
ations of the turbulent parameters involved in the dynamo pro-
cess. Generally, we anticipate that statistical properties of long-
term cycle variations are depended on the force that drives the
long-term variations. We examined weakly nonlinear models
with the amplitude of the α-effect close to the threshold. In our
models, the typical ratio between the energy of the large-scale
toroidal field and the kinetic energy of convective flows does not
exceed 0.3. As a result, the chaotic regime in the model is not as
evident as the impact of the α-effect fluctuations. Figure 9 illus-
trates the difficulty to obtain extended episodes of low magnetic
activity in this case, while these episodes are common in the so-
lar dynamo (Solanki et al. 2004). To amplify the chaotic regime
in the model, we have tried additional possibilities and included
an angular momentum balance into the dynamo problem to take
into account the nonlinear feedback of the magnetic field on the
differential rotation. The model was described earlier by Pipin
(1999, 2004). Figure 11 shows the simulated SN for the model
involving the nonlinear effect of the magnetic field on the angu-
lar momentum balance in the solar convection zone. This model
shows higher intermittency in the cycle variations than that in
Fig. 3, and indeed it has a similar probability of the occurrence
of lowactivity episodes as that in the reconstruction data set.

It is natural to expect that at least stellar magnetic cycles of
solar-like stars should demonstrate a variability similar to the
solar one, including relations comparable with the Waldmeier
relations. Available observations of stellar activity provide some
hints that support this expectation. Stellar activity data of the
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Mount Wilson HK project measuring the Ca H and K line index
for other stars (Baliunas et al. 1995) are available for two activity
cycles. The wavelet analysis of the data for several stars (Frick
et al. 1997) demonstrated that the subsequent cycles for a given
star can differ in their cycle amplitudes. We note that a monitor-
ing of stellar activity of solar-like stars to obtain relations similar
to the Waldmeier ones could establish our prognostic abilities of
solar activity based on these relations much better.

Summarizing the results of the paper, we conclude that
the mean-field solar dynamo theory provides a way to explain
the cycle-to-cycle variability of solar activity as recorded in
sunspots. The results given in the literature and the results ob-
tained in the paper suggest that the Waldmeier relations can be
explained invoking very different kinds of dynamo models. More
work is necessary to study the relations between the statistical
properties of the dynamo cycle, and the dynamo mechanisms in-
volved in the magnetic activity will help to obtain more insight
into the processes operating in the stellar and solar dynamo.
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Křivský, L., & Pejml, K. 1988, Publications of the Astronomical Institute of the

Czechoslovak Academy of Sciences, 75
Miesch, M. S., Brun, A. S., De Rosa, M. L., & Toomre, J. 2008, ApJ, 673, 557
Mitra, D., Candelaresi, S., Chatterjee, P., Tavakol, R., & Brandenburg, A. 2010,

Astron. Nachr., 331, 130
Miyahara, H., Masuda, K., Muraki, Y., Kitagawa, H., & Nakamura, T. 2006a, J.

Geophys. Res. (Space Physics), 111, 3103
Miyahara, H., Sokoloff, D., & Usoskin, I. G. 2006b, Adv. Geosci., 2, 1
Moss, D., Sokoloff, D., Usoskin, I., & Tutubalin, V. 2008, Sol. Phys., 250, 221
Nagovitsyn, Y. A. 1997, Astron. Lett., 23, 742
Ossendrijver, A. J. H., & Hoyng, P. 1996, A&A, 313, 959
Ossendrijver, A. J. H., Hoyng, P., & Schmitt, D. 1996, A&A, 313, 938
Parker, E. 1955, ApJ, 122, 293
Parker, E. N. 1993, ApJ, 408, 707
Peristykh, A. N., & Damon, P. E. 1998, Sol. Phys., 177, 343
Pipin, V. V. 1999, A&A, 346, 295
Pipin, V. V. 2004, Astron. Rep., 48, 418
Pipin, V. V. 2008, Geophys. Astrophys. Fluid Dyn., 102, 21 (P08)
Pipin, V. V., & Kosovichev, A. G. 2011a, ApJ, 741, 1
Pipin, V. V., & Kosovichev, A. G. 2011b, ApJ, 727, L45
Pipin, V. V., & Sokoloff, D. D. 2011, Phys. Scr., 84, 065903
Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. 1993,

Numerical Recipes in FORTRAN, The Art of Scientific Computing (NY,
USA: CUP)

Ribes, J. C., & Nesme-Ribes, E. 1993, A&A, 276, 549
Schatten, K. H., Scherrer, P. H., Svalgaard, L., & Wilcox, J. M. 1978,

Geophys. Res. Lett., 5, 411
Schove, D. J. 1955, J. Geophys. Res., 60, 127
SIDC 2010, Monthly Report on the International Sunspot Number, online cata-

logue, http://www.sidc.be/sunspot-data/
Silverman, S. M. 1992, Rev. Geophys., 30, 333
Solanki, S. K., Usoskin, I. G., Kromer, B., Schüssler, M., & Beer, J. 2004,

Nature, 431, 1084
Soon, W. H., Baliunas, S. L., & Zhang, Q. 1994, Sol. Phys., 154, 385
Stix, M. 2002, The sun: an introduction, ed. M. Stix
Subramanian, K., & Brandenburg, A. 2004, Phys. Rev. Lett., 93, 205001
Svalgaard, L., Duvall, Jr., T. L., & Scherrer, P. H. 1978, Sol. Phys., 58, 225
Usoskin, I. 2008, Liv. Rev. Sol. Phys., 5, 3
Usoskin, I. G., Mursula, K., & Kovaltsov, G. A. 2001, J. Geophys. Res., 106,

16039
Usoskin, I. G., Mursula, K., & Kovaltsov, G. A. 2003, A&A, 403, 743
Usoskin, I. G., Mursula, K., Solanki, S., Schüssler, M., & Alanko, K. 2004,

A&A, 413, 745
Usoskin, I. G., Mursula, K., Arlt, R., & Kovaltsov, G. A. 2009a, ApJ, 700, L154
Usoskin, I. G., Sokoloff, D., & Moss, D. 2009b, Sol. Phys., 254, 345
Vaquero, J. M., Gallego, M. C., Usoskin, I. G., & Kovaltsov, G. A. 2011, ApJ,

731, L24
Vitinsky, Y. I., Kopecky, M., & Kuklin, G. V. 1986, The statistics of sunspots

(Statistika pjatnoobrazovatelnoj dejatelnosti solntsa) (Moscow: Nauka), 298
Waldmeier, M. 1935, Astron. Mitt. Zurich, 14, 105
Waldmeier, M. 1936, Astron. Nachrichr., 259, 267
Yoshimura, H. 1975, ApJ, 201, 740
Zaslavsky, G. 1978, Phys. Lett. A, 69, 145
Zhang, H., Sakurai, T., Pevtsov, A., et al. 2010, MNRAS, 402, L30

Page 11 is available in the electronic edition of the journal at http://www.aanda.org

A26, page 10 of 11

http://www.sidc.be/sunspot-data/
http://www.aanda.org


V. V. Pipin et al.: Variations of solar cycle profile in a solar dynamo

Appendix A

Here, we describe the contributions of the mean-electromotive
force that are involved in Eq. (1). The basic formulation is given
in Pipin (2008, P08). In this paper we reformulate tensor α(H)

i, j ,
which represents the hydrodynamical part of the α-effect, by us-
ing Eq. (23) from P08 in the following form,

α(H)
i j = δi j
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(
e · Λ(ρ)

)
+ f (a)

11

(
e · Λ(u)

))}
+eie j

{
3ηT

(
f (a)
5

(
e · Λ(ρ)

)
+ f (a)

4

(
e · Λ(u)

))}
+3ηT

{(
eiΛ

(ρ)
j + e jΛ

(ρ)
i

)
f (a)
6

+
(
eiΛ

(u)
j + e jΛ

(u)
i

)
f (a)
8

}
. (A.1)

The contribution of magnetic helicity χ = a · b (a is a fluctuat-
ing vector magnetic field potential) to the α-effect is defined as
α(M)

i j = C(χ)
i j χ, where

C(χ)
i j = 2 f (a)

2 δi j
τc

μ0ρ�2
− 2 f (a)

1 eie j
τc

μ0ρ�2
· (A.2)

The turbulent pumping, γi, j, is also part of the mean electromo-
tive force in Eq. (23) (P08). Here we rewrite it in a more tradi-
tional form (cf., e.g., ),

γi j = 3ηT

{
f (a)
3 Λ

(ρ)
n + f (a)

1

(
e · Λ(ρ)

)
en

}
εin j

−3ηT f (a)
1 e jεinmenΛ

(ρ)
m . (A.3)

The effect of turbulent diffusivity, which is anisotropic because
of the Coriolis force, is given by

ηi jk = 3ηT

{(
2 f (a)

1 − f (d)
2

)
εi jk − 2 f (a)

1 eienεn jk

}
. (A.4)

Functions f (a,d)
{1−11} depend on the Coriolis number Ω∗ = 2τcΩ0

and the typical convective turnover time in the mixing-length
approximation, τc = �/u′. They can be found in P08. The turbu-
lent diffusivity is parametrized in the form, ηT = Cηη

(0)
T , where

η(0)
T =

u′�
3

is the characteristic mixing-length turbulent diffusiv-

ity, u′ is the rms convective velocity, � is the mixing length, Cη is
a constant to control the intensity of turbulent mixing. The other
quantities in Eqs. (A.1), (A.3), (A.4) are Λ(ρ) = ∇ log ρ is the
density stratification scale, Λ(u) = ∇ log

(
η(0)

T

)
is the scale of tur-

bulent diffusivity, e = Ω/ |Ω| is a unit vector along the axis of ro-
tation. Equations (A.1), (A.3), (A.4) take into account the influ-
ence of the fluctuating small-scale magnetic fields, which can be
present in the background turbulence and stem from the small-

scale dynamo. In our paper, the parameter ε =
b2

μ0ρu2
, which

measures the ratio between the magnetic and kinetic energies of
fluctuations in the background turbulence, is assumed to be equal
to 1. This corresponds to the energy equipartition. The quench-
ing function of the hydrodynamical part of α-effect is defined by

ψα =
5

128β4

(
16β2 − 3 − 3

(
4β2 − 1

) arctan (2β)
2β

)
· (A.5)

Note in the notation of P08 ψα = −3/4φ(a)
6 , and β =

∣∣∣B∣∣∣
u′

√
μ0ρ

.

Below we give the functions of the Coriolis number defining
the dependence of the turbulent transport generation and diffu-
sivities on the angular velocity:

f (a)
1 =

1
4Ω∗2

((
Ω∗ 2 + 3

) arctanΩ∗

Ω∗
− 3

)
,

f (a)
2 =

1
4Ω∗2

((
Ω∗ 2 + 1

) arctanΩ∗

Ω∗
− 1

)
,

f (a)
3 =

1
4Ω∗2

((
(ε − 1)Ω∗2 + ε − 3

) arctanΩ∗

Ω∗
+ 3 − ε

)
,

f (a)
4 =

1
6Ω∗3

(
3
(
Ω∗4 + 6εΩ∗2 + 10ε − 5

) arctanΩ∗

Ω∗

−
(
(8ε + 5)Ω∗2 + 30ε − 15

))
,

f (a)
5 =

1
3Ω∗3

(
3
(
Ω∗4 + 3εΩ∗2 + 5(ε − 1)

) arctanΩ∗

Ω∗

−
(
(4ε + 5)Ω∗2 + 15(ε − 1)

))
,

f (a)
6 = − 1

48Ω∗3

(
3
(
(3ε − 11)Ω∗2 + 5ε − 21

) arctanΩ∗

Ω∗

−
(
4 (ε − 3)Ω∗2 + 15ε − 63

))
,

f (a)
8 = − 1

12Ω∗3

(
3
(
(3ε + 1)Ω∗2 + 4ε − 2

) arctanΩ∗

Ω∗

−
(
5 (ε + 1)Ω∗2 + 12ε − 6

))
,

f (a)
10 = −

1
3Ω∗3

(
3
(
Ω∗2 + 1

) (
Ω∗2 + ε − 1

) arctanΩ∗

Ω∗

−
(
(2ε + 1)Ω∗2 + 3ε − 3

))
,

f (a)
11 = −

1
6Ω∗3

(
3
(
Ω∗2 + 1

) (
Ω∗2 + 2ε − 1

) arctanΩ∗

Ω∗

−
(
(4ε + 1)Ω∗2 + 6ε − 3

))
.

f (d)
2 =

1
4Ω∗2

((
(ε − 1)Ω∗2 + 3ε + 1

) arctanΩ∗

Ω∗
− 3ε − 1

)
.
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