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ABSTRACT

Context. The group sunspot number (GSN) series constitute the longest instrumental astronomical database providing information
on solar activity. This database is a compilation of observations by many individual observers, and their inter-calibration has usually
been performed using linear rescaling. There are multiple published series that show different long-term trends for solar activity.
Aims. We aim at producing a GSN series, with a non-linear non-parametric calibration. The only underlying assumptions are that the
differences between the various series are due to different acuity thresholds of the observers, and that the threshold of each observer
remains constant throughout the observing period.
Methods. We used a daisy chain process with backbone (BB) observers and calibrated all overlapping observers to them. We per-
formed the calibration of each individual observer with a probability distribution function (PDF) matrix constructed considering all
daily values for the overlapping period with the BB. The calibration of the BBs was carried out in a similar manner. The final series
was constructed by merging different BB series. We modelled the propagation of errors straightforwardly with Monte Carlo simu-
lations. A potential bias due to the selection of BBs was investigated and the effect was shown to lie within the 1σ interval of the
produced series. The exact selection of the reference period was shown to have a rather small effect on our calibration as well.
Results. The final series extends back to 1739 and includes data from 314 observers. This series suggests moderate activity during
the 18th and 19th century, which is significantly lower than the high level of solar activity predicted by other recent reconstructions
applying linear regressions.
Conclusions. The new series provides a robust reconstruction, based on modern and non-parametric methods, of sunspot group
numbers since 1739, and it confirms the existence of the modern grand maximum of solar activity in the second half of the
20th century.
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1. Introduction

Observations of sunspots on the solar disc have been performed
regularly since the advent of telescopes in the early 17th cen-
tury. These measurements constitute the longest ongoing ob-
servational programme in astrophysics, providing important in-
sights into solar activity and variability on centennial timescales.

However, these observations have been carried out by dif-
ferent people, with different instruments, at various locations.
In some cases observations were taken for a different purpose
but were also later used to define sunspot numbers. The defi-
nition of a sunspot group might have changed with time, gaps
exist within the series of individual observers, and the various
series do not necessarily all overlap with each other. Even for
the same observer, the quality of the record may vary with time
owing to, for example gaining experience, ageing of the ob-
server (e.g. deteriorating eyesight), change of instrumentation,
or varying conditions at the observing location. There have been

? Values of the group sunspot number series are only available at the
CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5)
or via
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/602/A69

several attempts to harmonize these measurements and to pro-
duce a homogeneous composite series. The first effort was made
by Rudolf Wolf from Zürich who introduced the Wolf sunspot
number (WSN) in 1848 (Wolf 1850, continued and updated as
the international sunspot number, ISN), given by the formula

Rs = k(10 G + S ), (1)

where k is a weighting factor to normalize the various observers
with each other, S the number of sunspots, and G the number
of sunspot groups. It is important that, for the sake of homo-
geneity, data from only one primary observer were used for each
day. If the data from the primary observer were not available
for a given day, data from the secondary, tertiary, etc., observer
were used, but only one observation was used per day, ignor-
ing all other available data. The original records and notebooks
of Wolf are not readily available now, implying that WSN can-
not be re-constructed from scratch. This series contains annual
values back to 1700, while monthly and daily values go back
to 1749 and 1818, respectively. Since 1981 the WSN/ISN se-
ries has been synthesized by the Royal Observatory of Belgium
(Clette et al. 2007), adapted to include all available observers for
each day, rather than only the primary observer. The WSN/ISN
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series has been recently updated as version 2.0 by correcting for
some proposed inhomogeneities (Clette et al. 2014).

More than a century after the work by Wolf, Hoyt & Schatten
(1998) introduced the group sunspot number (GSN) series
(HoSc98, hereafter), which is based on the number of sunspot
groups only, neglects individual spots and includes data from all
observers on the same day. The daily GSN is defined as

Rg =
12.08

N

∑
i

kiGi, (2)

where ki is the individual correction factor of the ith observer,
Gi is the GSN reported by the ith observer, N is the total num-
ber of observers on the given day, and the constant 12.08 was
introduced to match the average level of Rg to that of Rs over the
period 1874–1976. The GSN series was designed to be more ro-
bust than WSN/ISN since it only considers sunspot groups and
reduces uncertainties in the counts of individual sunspots. In ad-
dition, the GSN series includes a much greater number of raw
data than WSN and is extended further back in time to 1610.
An important advantage is that for the GSN series, a complete
database of the raw data (published as Hoyt & Schatten 1998,
and revised recently by Vaquero et al. 2016) is available, which
makes it possible to reconstruct the entire series from scratch.

The homogenization and cross-calibration of the data
recorded by earlier observers was always performed through a
daisy-chaining sequence of linear scaling normalization of the
various observers, using the k–factors. This means that starting
with a reference observer, the k–factors are derived for overlap-
ping observers. The latter data are in turn used as the reference
for the next overlapping observers, etc. As is apparent, this leads
to error accumulation in time when moving further away from
the reference observer.

It has become obvious that the old series need to be revised
because of the new-found data and the outdated methodology
based on constant k–factors. The issue with such methods is
twofold. Firstly, such methods assume that counts by two ob-
servers are proportional to each other, which is generally not
correct. Secondly, the k–factors are assumed to be constant for
the entire operational period of each observer, whereas in real-
ity the acuity of the observers and sensitivity of the instruments
may vary with time. A dedicated activity of the research com-
munity (Clette et al. 2014) has led to several new sunspot series
discussed below.

Cliver & Ling (2016, ClLi16, hereafter) have attempted to
revise the GSN series using essentially the same methodology
as Hoyt & Schatten (1998). They claim, however, that the ear-
lier part of the Royal Greenwich Observatory (RGO hereafter)
data (i.e. 41 yr before 1915) might suffer from uneven quality
owing to the purported learning curve process. Therefore, they
corrected the GSN values over this period by normalizing them
to the data by Wolfer using a second degree polynomial fit. The
inhomogeneity of the early RGO data is still a matter of debate,
however. Other studies did not find any extensive problem with
RGO data: Sarychev & Roshchina (2009), Clette et al. (2014),
and Lockwood et al. (2016b) reported as potentially problematic
periods before 1880, 1900, and 1877, respectively, while data
from Aparicio et al. (2014) and Carrasco et al. (2013) do not ex-
hibit any apparent trend with respect to RGO data after ∼1885
and 1890, respectively. Thus, the period of 1874–1915 used by
ClLi16 to “recalibrate” the RGO dataset is not well defined. The
ClLi16 series covers the period 1841–1980 and yields the high-
est level of sunspot activity in the mid-19th century among all
available reconstructions.

Svalgaard & Schatten (2016, SvSc16, hereafter) also used
the method of daisy-chaining k–factors. But these authors in-
troduced five key observers (called “backbones”, BB hereafter)
to calibrate each overlapping secondary observer to these BBs.
Thus, they seemingly reduced the number of daisy-chain steps
because some daisy-chain links are moved into the BB compila-
tion rather than being eliminated. The problem with this method
is that most of the BB observers did not overlap with each other.
Thus their inter-calibration was performed via series extended
using secondary observers with lower quality and poorer statis-
tics. In the end, this introduces even more daisy-chain steps,
since each BB observer is normalized to the neighbouring ob-
server using a three-step procedure. The SvSc16 series also re-
duced the number of sunspot groups after 1940 by 7% to take
into account the possible effect of the introduction of the Wald-
meier classification of sunspot groups (Waldmeier 1939). How-
ever Lockwood et al. (2016a,c) have questioned the necessity for
such a correction for the GSN. The SvSc16 series covers the pe-
riod 1610–2015 and suggests a rather high level of solar activity
in the 18th and, especially, 17th centuries.

All of these sunspot number series used calibration meth-
ods based on the linear scaling regression to derive constant
k–factors. However, this linear k–factor method has been demon-
strated to be unsuitable for such studies (Lockwood et al. 2016d;
Usoskin et al. 2016a,b), leading to errors in the reconstructions
that employ them.

An alternative method was proposed by Usoskin et al.
(2016b, UEA16, hereafter), who calibrated each observer di-
rectly to the reference dataset, avoiding the daisy chain and error
accumulation. The method is based on comparison of the active
day fraction statistics of an observer with that in the reference
dataset (RGO data for the period 1900–1976). The quality of
each observer is characterized by the acuity observational thresh-
old so that the observer is assumed to miss all sunspot groups that
are smaller than this threshold, and to report all sunspot groups
that are larger than this threshold. The acuity threshold for each
observer is found by matching their active day fraction statistic
with that of an artificially created reference dataset. The UEA16
series covers the period 1749–1995 and yields a moderate level
of sunspot activity in the 18th and 19th centuries, lying between
the HoSc98 and SvSc16 series.

Another revision of the GSN series was carried out by
Lockwood et al. (2014) who corrected it for some apparent in-
homogeneities. However, since this study is close to the HoSc98
series, we do not consider it separately here.

Thus, presently there are a number of sunspot reconstruc-
tions using different methods of calibration and yielding results
that are inconsistent with each other. The most critical implica-
tion of these series is that they yield different long-term trends
for the activity of the Sun (Lockwood et al. 2016b; Kopp et al.
2016). Over the 19th and 20th centuries, ClLi16 and SvSc16
show no trend, while HoSc98 and UEA16 show an increase in
solar activity.

In an attempt to bridge the methodologies underlying pre-
vious studies and present more accurate error estimates, we
present here a recalibration of the GSN data using an amendment
of the most direct non-parametric calibration method described
in Usoskin et al. (2016a). Similarly to SvSc16, we incorporate
BB observers. However, the calibration of overlapping observers
is performed with a non-linear non-parametric probability distri-
bution function (PDF) derived from sunspot group counts for
days when two observers overlap. This allows us to account for
the error propagation in a straightforward manner. Calibration of
the different resulting BB series is achieved with daisy chaining.
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Table 1. Backbones used in this study.

Backbone Id Period of observations Observers Nd Md
a

series primary observer
RGO 332 1882–2010 1900–1976 81 46 087
Kanzelhöhe 606 1935–2010 1957–2010 156 25 690 25 526
Wolfer 335+338 1858–1935 1876–1928 25 22 968 16 601
Schmidt 292 1841–1900 1841–1883 11 18 240 11 708
Schwabe 279 1822–1892 1825–1867 22 14 160 7386
Flaugergues 22+227 1774–1844 1788–1830 12 6948 1383 (1503)
Horrebow 180 1749–1799 1761–1776 4 2762 1775 (1795)
Schubert 178 1754–1758 1754–1758 1 492 10 (20)
Zucconi 177 1754–1760 1754–1760 1 899 17 (29)
Hagen 161 1739–1751 1739–1751 1 116 21 (34)

Notes. Columns are: name and identification (Id) of the primary BB observer; period covered by the BB composite series; period of observations
of the primary observer; number of observers included in the BB series; number Nd of daily observations of the BB composite series; and direct
daily overlap with the reference BB series, i.e. the number of days available in both BB series Md.(a) Values in parenthesis are within ±1 day
interval.

The data we use are introduced in Sect. 2. The procedure, in-
cluding information about all individual BB observers and their
processing is described in Sect. 3. Our composite series is pre-
sented and compared with other existing series in Sect. 4, where
we also discuss the stability of our method and potential prob-
lems of our series. We summarize our results in Sect. 5.

2. Data

We employ the database1 of the sunspot group numbers
recorded by individual observers that was recently published by
Vaquero et al. (2016) as an update of the HoSc98 database. Ob-
servers are uniquely identified by their identification number in
the database. Here we use these identification numbers as well.

We apply the following filters to these data:

– Data by Wolfer (1880–1928, id 338) were merged with those
by Billwiller and Wolfer (1876–1879, id 335). The two se-
ries were combined together to a single series, since they
do not directly overlap. The two series differ in that the for-
mer includes observations solely by Wolfer, while the latter
includes observations made by both Wolfer and Billwiller.
By merging these two series together, we can increase the
length of the Wolfer series and its overlap with observations
by Schmidt.

– Data from Flaugergues, H., Aubenas (1794–1795, id 22)
were also merged with those from Flaugergues, H., Viviers
(1788–1830, id 227) using the same procedure. These two
datasets were obtained by the same observer, Flaugergues,
who performed the bulk of his observations in Viviers,
Ardéche, but who relocated to Aubenas for a period of about
two years.
The dataset from Aubenas contains merely 91 observations
for these two years, a period of otherwise sparse observa-
tions (we have only nine records from all other observers
used here). The overlap of the observations of Flaugergues
from Aubenas to other observers is less than three days and
does not provide adequate statistics to properly calibrate this
series. Considering that the two locations are close to each
other in the south of France, we make the assumption that the
observing conditions were not significantly different. This
enables us to merge the two Flaugergues series. Furthermore,

1 Available at http://haso.unex.es/?q=content/data

because of the poor overlap with other series, inclusion of
these data does not affect the rest of our series.

The HoSc98, ClLi16, SvSc16, and UEA16 series were down-
loaded from the SILSO2 (Royal Observatory of Belgium)
website.

3. Calibration process

3.1. Algorithm and primary observers

We have developed an automated algorithm to perform the cal-
ibration of sunspot records by individual observers which in-
cludes the following steps:

– First, we selected primary BB observers who provided long
and high-quality observations.

– Next, we calibrated the data from all other observers, de-
noted as secondary observers hereafter, to the primary BB
observers using periods of overlapping observations (suffi-
cient overlap is required, see Sect. 3.3), and produced the
“BB series”, which are composites of data from the BB ob-
server and all other observers calibrated to him/her.

– Individual BB series were cross-calibrated to each other, us-
ing the daisy-chain procedure.

– Finally, the composite series of daily GSN was constructed
by averaging the calibrated BB series.

The calibration was carried out using a direct non-parametric
method to a single reference dataset with a straightforward prop-
agation of errors. No regression was used and the acuity of the
observers was assumed constant over their entire observing life.
The method is described in detail in Sect. 3.2

The selected sequence of the primary BB observers is
Kanzelhöhe, RGO, Wolfer, Schmidt, Schwabe, Flaugergues, and
Horrebow (see Table 1). The BB observers were selected to be
those with sufficiently long observational records of high qual-
ity. We also used Schubert, Zucconi, and Hagen as stand-alone
BBs. Because of the lacking bridge in the data in the middle of
the 18th century, we were unable to directly calibrate these three
observers to a single observer acting as a BB. Thus we did this
by the extended statistics of the calibrated BB series. These ob-
servers are important since they cover periods over the 18th cen-
tury when no other data are available. Our reference observer is

2 http://www.sidc.be/silso/groupnumberv3
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Fig. 1. Temporal coverage by the BBs used here. Solid black lines rep-
resent the primary BB observers, while grey lines depict the extension
of the BBs using calibrated secondary observers.

RGO (but restricted to the period between 1900–1976) and all
other BB series were calibrated to the level of RGO.

All data from RGO prior to 1900 were ignored when consid-
ering the primary BB observer because of the disputed inhomo-
geneity, as discussed in the Introduction. We discuss the effect
of this decision on our calibration in Sect. 4.2.3.

3.2. Secondary observers

Each BB series was also filled with all available secondary ob-
servers calibrated to the primary BB observers. As secondary
observers we selected all the observers that have at least one
nominal year of overlap with the primary BB observer. To avoid
a distortion of statistics, each observer was included only in one
BB. The assignment of observers to the BBs was made based
on the length of the overlapping period and by trying to match
observers with comparable quality BB observers. The only two
successive BB observers whose observations do not overlap in
time are Horrebow and Flaugergues. The bridging was made us-
ing Staudacher data. In this case, we chose Horrebow as the BB
over Staudacher, because he observed more frequently and the
data are of higher quality. Unfortunately, we were not able to
go further back in time than Hagen (1739), because of the very
sparse observations over this period with no observer making
observations both before and after 1739 with adequate data to
perform the calibration. Table 1 and Fig. 1 provide key informa-
tion about the BB observers and series.

All the observers we used for various BBs are listed in
Tables A.1 through A.7. Figure 2 shows the number of days
within each year covered by (a) the different BB series (i.e. in-
cluding both primary and secondary observers) and by (b) our fi-
nal composite series. One can see that the coverage is very good
after ca 1800, but very poor in 1780–1795. This poorly covered
period has led to large uncertainties in the daisy-chain method in
the 18th century.

3.3. Construction of the backbone series

We started by building a direct calibration matrix (cf. Usoskin
et al. 2016a) between the secondary observer to be calibrated
and the primary BB observer for the days when both have
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Fig. 2. Annual coverage (number of observational days per year) by
the different BB series (coloured curves in panel a)) and by our final
composite series (panel b)).

observations. If, on a given day, N1 and N2 groups were recorded
by the primary and secondary observers, respectively, then unity
was added to the row N1 and column N2 of the matrix. In this
way, the matrix was filled with all the overlapping days. Then
the matrix was normalized such that each of its values were di-
vided by the total sum over the corresponding column. Thus,
we obtained a matrix of probability density functions (PDF) to
find a value of G∗ reported by the primary observer for each day
with the given value G reported by the secondary observer. This
allows a direct calibration of the secondary observer to the pri-
mary observer by replacing the G value with the PDF of G∗.
This is the most straightforward method for calibration applied
directly to the data.

However, this matrix can potentially have some gaps due
to poor statistics and limited range of overlap between the ob-
servers. In such cases, we fill the gaps by fitting the statistically
significant part of the matrix with a function

〈G∗〉 −G = R0 + Be−aG, (3)

where 〈G∗〉 are the mean counts of the primary observer (i.e.,
the mean of the PDF of each column of the matrix) for a given
count of the secondary observer G, R0, B, and a are constants
calculated for each pair of observers individually. We used the
weighted least mean squares to find the best-fit parameters. This
functional shape (asymptotic exponential approach to a constant
offset in the difference) was proposed by Usoskin et al. (2016a)
and found suitable for this kind of dependence, using synthetic
data that were based on RGO sunspot group area data.

Only those columns of the matrix that contain more that
20 overlapping days were included into the fitting procedure. If
the fit deviated by more than one group from the actual mean
〈G∗〉, such columns were excluded, and the fit was redone. In
such cases we refilled the column matrices using a PDF derived
with a bootstrap Monte Carlo (MC, hereafter) simulation. For
this, we randomly selected half of the overlapping days from the
two observers, reconstructed the matrix using this half-statistics
and recalculated the fit for the matrix. This process was repeated
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a)

b)

c)

Fig. 3. Example of the construction of the calibration matrix for Win-
kler (secondary observer, G) to RGO (primary, G∗) over 1900–1910.
Panel a) shows the original distribution matrix G∗ vs. G: the black line
has a slope of unity. Panel b) shows the difference, G∗−G vs. G. Panel c)
is the same as b) but the empty columns for G∗ > 8 have been filled with
the results of the MC simulation. The red circles with error bars depict
the mean G∗ values for each G column and their 1σ uncertainty. The
yellow line shows the k–factor used in Hoyt & Schatten (1998).

1000 times. The result of this simulation was used as a PDF for
the corresponding column in the matrix.

An example of the matrix is shown in Fig. 3a for Winkler
(secondary observer, G) and RGO (primary reference observer,
G∗) over the period of their overlap (1900–1910 with 2480 com-
mon days). It is apparent that RGO typically reported more
groups than Winkler for the same day, since most of the matrix
values lie above the line expected for a perfect match between
the two (black line). The matrix of the difference, G∗ −G versus
G, is shown in Fig. 3b. The red circles with error bars repre-
sent the mean 〈G∗〉 value in each G column and its (asymmetric)
1σ intervals. The green curve shows the best fit of the functional
form of Eq. (3). It is obvious that the relation between G∗ and G
is non-linear and cannot be represented by a simple linear scal-
ing k–factor. One can see that, because of the limited overlap,
the matrix is well constructed only for G < 9. For higher values,
the fit (Eq. (3)) has to be used. The full matrix with the values
filled with the MC method for G > 8 is shown in Fig. 3c.

Each secondary observer was calibrated to the BB observer
by replacing, from the matrix, every daily count G with the
PDF of the calibrated counts G∗. In this way we directly convert
the observations of the secondary observer to the BB condition

without making any assumption about the type of relationship
(e.g. linearity) and with a straightforward error estimate.

For each BB we constructed a composite series by averaging
all the PDFs of all the available observations for every day, so
that again, instead of one count for each day, we get a distribu-
tion based on all available observers. This composite of averaged
PDFs includes possible errors in a straightforward way.

Only observers with a sufficiently long record of relatively
good quality were included into the analysis. The selection of
secondary observers was made using the following criteria:

1. The overlap with the primary BB observer should be not less
than 20 common days of observations. This criterion was not
applied for early years (see Sect. 3.3.1).

2. Observers with an overall record longer than 10 yr were con-
sidered only if their overlap with the primary BB observer
was at least 4 yr. This is merely to make sure that long-
running observers are not calibrated with a small fraction of
their observations that might not be representative.

3. In cases in which we need to perform the fit to extrapolate
to missing values in the matrix, we requested the conversion
matrix for a selected observer to have sufficient data to cover
at least three G-value bins. This is necessary since the func-
tion described by Eq. (3) has three parameters.

4. The matrix should cover, with sufficient statistics, at least
one-quarter of the range of counts reported by the secondary
observer.

5. Observers were excluded from the analysis if the difference
matrix (see an example in Fig. 3b) had an average offset of
more than two groups for the G values from 0 to 5.

6. Observers, whose data could not be fitted accurately enough
(χ2 per degree of freedom <6), were also excluded.

After the calibration process of all observers, we compared each
individual observer with the composite BB series they were
part of. We excluded those that showed significant and sys-
tematic discrepancies. Four observers were removed as they
showed such differences, namely Taipei observatory (Id 456),
Lunping (Id 457), Mojica, Cochabamba, Bolivia (Id 628), and
XE (Id 715). We also excluded the Locarno station (Id 614), be-
cause of the possible lack of stability after 1980 (Clette et al.
2016).

There are also some special cases, which are described below
in detail.

3.3.1. Sparse data: Schwabe and earlier backbones

Because of the lack of data for the first years of the Schwabe
BB, we have not applied the criterion 1 from the list above to
his data. Furthermore, while constructing the calibration matrix
we considered observations not only during overlapping days
but also within ±1 day; if there was no direct overlap, we first
checked one day earlier and then one day later, making sure
that no more than one pair entered the matrix. Possible errors
due to short-lived groups are negligible compared to the gain of
the increased statistical sample (Willis et al. 2016; Usoskin et al.
2016b). These relieved constraints were also applied to the BBs
covering earlier periods, when the statistics were poor.

3.3.2. Correcting for low quality observations: Flaugergues,
Schubert, Zucconi, and Hagen backbones

For most BBs, we were able to match observers with a relatively
similar quality. This was not the case for Flaugergues, though.
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Flaugergues’ data are very important, because they are the only
record covering a relatively extended period in the early 1800s.
However, the G values he reported are significantly lower than
those by other observers during that period, implying that his
observations are of lower quality (higher acuity observational
threshold). Therefore, a calibration of all other observers, with
higher quality data, directly to Flaugergues would reduce their
quality while increasing the uncertainties. In order to avoid that,
we made use of a corrected Flaugergues series, calibrated to the
mean level of the other observers of the period. In order to make
the correction, we assumed that the acuity threshold for Flauger-
gues is A = 100 msd, which is greater than for any other ob-
server (Usoskin et al. 2016b). In this case the acuity threshold
for Flaugergues does not even have to be the correct one, but it
only should allow us to calibrate the overlapping observers with-
out downgrading their quality. Applying the 100 msd threshold
and the method described in Usoskin et al. (2016a), we obtained
the following parameters for Eq. (3) for Flaugergues: a = 0.18,
R = 6.94, and B = 6.03. Then other observers were calibrated to
this “corrected” Flaugergues series.

The same process with the same threshold was used for the
Schubert, Zucconi, and Hagen BBs.

3.4. Inter-calibration of backbone series

Once the BB series were constructed and calibrated to the pri-
mary BB observer, different BB series had to be inter-calibrated
to each other. We used the RGO BB as the reference one, and the
others were calibrated to it using a daisy chain. The calibration of
the BB series was performed using a procedure similar to that for
the individual observers, by constructing the cross-calibration
matrix between the whole BB series this time. However in this
case, we have, for each day, not a single G value but a PDF from
each observer (now the entire composite BB series is considered
an observer). In order to account for that, we constructed the cal-
ibration matrix using a MC simulation as described below. For
each day with simultaneous observations from both “observers”
(the BB series), we randomly selected G values corresponding
to the PDFs and filled the matrix. This process was performed
1000 times for each day, and the final matrix was computed as
the average among all the individual matrices.

Monte Carlo simulations were used to calibrate the sec-
ondary BB to the reference one accounting for the error prop-
agation. We randomly picked a G value from the PDF for each
day of the secondary BB series and obtained, from the matrix,
the PDF of the G∗ values for the reference BB. This was repeated
1000 times and the average PDF of the G∗ values was considered
as the calibrated PDF of the secondary BB series for that day.

The procedure is illustrated in Fig. 4, which shows the re-
sult of the calibration of the secondary Wolfer BB series to the
primary RGO BB series. It is evident from the panel a) that
the RGO BB G values are systematically higher than those of
the Wolfer BB (the difference is positive), implying that RGO is
a better observer than Wolfer. After the calibration (panel b), the
two series match each other so that the mean difference is con-
sistent with zero in the entire range of G values implying that the
calibration was carried out correctly.

This procedure works well for all the BBs. However, the re-
sults for the Horrebow BB series are very uncertain. The overlap
of this series with the Flaugergues BB series is short and occurs
only during activity minima around 1775 and 1795, which gives
merely four points (G values) to perform the fit and to extrapo-
late to the rest of the range of values. Since the method gives a

a)

b)

Fig. 4. Difference between the Wolfer and RGO backbones. Panel a)
shows an uncalibrated matrix after the full MC filling; panel b) shows
the same matrix after the calibration. The red circles depict the average
values in every column with their 1σ uncertainty ranges.

realistic estimate of the uncertainties, this is clearly expressed in
large error bars for the 18th century.

3.5. Construction of the final series

After all the BBs were calibrated to the reference RGO series,
the final composite series was produced. First, for each day,
all the available BB series values (in the form of a PDF) were
merged into a single PDF for that day. From the daily PDFs of
the calibrated G values we produced the monthly G values us-
ing a MC simulation. For this, for each day with available data
within a month, we randomly selected a G value from the final
daily PDF and then computed the monthly value as the arith-
metic mean of these daily values. This procedure was repeated
1000 times, and the PDF of the monthly values was constructed
for each month. This MC method considers all the uncertainties
straightforwardly. Finally, we collected the mean and asymmet-
ric ±1σ uncertainty level (a table is available at the CDS).

Next, the annual numbers of sunspot groups with their asym-
metric ±1σ uncertainties were calculated from the monthly val-
ues in the same manner as monthly values from the daily values.
The final annual series is given in Table B.1 and shown in Fig. 5.
The GSN in years without reliable values are denoted by −99.

4. Validation of the results

4.1. Comparison with other series

Other published GSN series are also shown in Fig. 5, but with-
out the uncertainties. While all the series are dominated by the
11-yr solar cycle, the centennial variability differs among differ-
ent reconstructions. The ClLi16 and SvSc16 series are system-
atically higher than our reconstruction in the 19th and 18th cen-
turies, while the HoSc98 series is somewhat lower. The present
result is close to UEA16 and lies between the “high” and “low”
models.
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Fig. 5. Annually averaged number of sunspot groups. This work is indicated in black with the ±1σ area shaded; HoSc98 is indicated in yellow;
UEA16 is shown in blue; SvSc16 is shown in green; and ClLi16 is indicated in red. Numbers on top of the curves denote the conventional solar
cycle numbering.

Fig. 6. Differences of the annual GSN between our series and other series (as denoted in the legend). Positive values imply that our series is higher.
The grey shading denotes the ±1σ range of our series. The numbers denote the conventional solar cycle numbering.

Figures 6 and 7 show the difference between various other
series and the result presented here.

One can see that all the series agree with each other in the
20th century, except the SvSc16 series which is systematically
lower than all others, although still within the error bars.

The UEA16 series is very close to our series during cy-
cle maxima, while there are noticeable differences around the
minima. The two series diverge for cycles 2 (our series is lower
than UEA16), 8–9 (ours is higher), and 21–22 (ours is lower).
The differences in cycles 22–23 can be explained by different
observers used: while UEA16 used only RGO and Koyama over

that period, we used here more than 150 observers, which allows
us to estimate the activity more accurately.

During the solar cycle minima our series agrees with
SvSc16, but there are distinct differences during the maxima.
The SvSc16 series gives higher values over the cycles 1–5 and
8–11, while lower values are found for almost all cycles over the
20th century. These differences can be at least partly explained
by the −7% ad hoc adjustment applied by SvSc16 to the data af-
ter 1940 and by the choice of Koyama as the reference observer
(see also a discussion about this in Sect. 4.2).

Over the 20th century, the ClLi16 series is essentially the
same as that of HoSc98, but they deviate over the 19th century
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Fig. 7. Differences of the solar cycle averaged GSN between our series
and other series (as denoted in the legend). Positive values imply that
our series is higher. The grey shading denotes the ±1σ range of our
series.
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Fig. 8. Long-term secular trend in different SN series, studied here, de-
fined as the first SSA component. The shading represents only statistical
uncertainties of the SSA method.

so that maxima in the ClLi16 series are 3–4 groups higher than
in HoSc98, and hence also than in ours. Keeping in mind that
we ignored the RGO data before 1900 and used Wolfer as the
reference for that period, the higher values by ClLi16 suggest a
possible overcorrection of the RGO series by these authors. This
is in agreement with the findings of Lockwood et al. (2016b).

In Fig. 8 we show the secular trends of different series con-
sidered here, using the non-parametric SSA (singular spectrum
analysis, Vautard et al. 1992). The SSA method is based on de-
composition of a time series into several components with dis-
tinct temporal behaviours. It is very convenient for the iden-
tification of long-term trends and quasi-periodic oscillations,
especially in the conditions when the secular trend is subdomi-
nant with respect to the main periodicity. As the secular trend we
consider the first SSA components of the SN series. We used the
time window for the SSA in the range of 80–100 yr, where the
result is stable. All series show that the activity level was high-
est in the late 20th century, corresponding to the modern grand
maximum, but the relative enhancement differs among series.
The greatest increase over the last 200 yr (defined as the ratio of
the values in 2000 and in 1750) is observed for the HoSc98 se-
ries (≈2.6), followed by the UEA (1.9) and our final series (1.7).
Finally, SvSc16 series yields 1.3. Thus, the modern grand maxi-
mum is observed in all series. According to this work, this grand
maximum is weaker than that in the HoSc16 series but greater
than in the SvSc16 series.

a)

b)

Fig. 9. Matrices of the G value difference between Wolf and Schmidt,
where Schmidt (panel a)) and Wolf (panel b)) are selected as reference
observers.

4.2. Tests of stability

4.2.1. Choice of backbone observers

As primary BB observers, we selected those with sufficiently
long observational periods of the best quality for each epoch.
This is illustrated in Fig. 9, which shows the difference matrices
for Wolf and Schmidt for two cases: Schmidt is considered as the
primary observer and Wolf as the secondary (panel a) and vice
versa (panel b). It is apparent that Schmidt was a better quality
observer and is more appropriate to be chosen as the primary BB
observer. By choosing Wolf as the BB observer, we would need
to degrade Schmidt and other observers.

To test whether our final series is robust against the choice
of the primary BB observers, we repeated the same analysis for
different BB combinations. We used all possible combinations
of high-quality long-lasting observers over four different inter-
vals: (1) RGO (1900–1976), Koyama (1947–1984), Mt Wilson
(1923–1958); (2) Wolfer (1880–1928), Quimby (1889–1921);
(3) Schmidt (1841–1883), Spoerer (1861–1893), Weber (1859–
1883), Wolf (1848–1893); (4) Schwabe (1826–1867), and Stark
(1813–1836). This led to 48 alternative reconstruction series.
Additionally, we constructed two more series by replacing
Kanzelhöhe (1957–2010) with Cragg (1947–2009) and Locarno
(1958–2010) and keeping all the other BBs as in the main series.
Thus the total number of various GSN reconstructions was 50.
We also included Flaugergues and Horrebow BBs in all series,
but excluded the stand-alone BBs. The reference observer was
chosen between RGO, Koyama, and Mt Wilson. Locarno has
been excluded from all composites and our main series, however,
we include it here as a BB to evaluate its effects on the calibra-
tion. We note that Quimby, as an individual observer, has overlap
only with RGO, Wolf and Spoerer, while Stark has no overlap
with any other BB observer used here. Thus, many of these aux-
iliary series result from disconnected BBs and are sometimes
based on poor statistics. They can be used to assess uncertain-
ties related to the BB selection, but as individual series, they
are much less reliable than our main composite series. In this
process, we did not exclude any other observers except those
automatically rejected by the code (Sect. 3.3). The selection of
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Fig. 10. Difference between the main reconstructed series and all 50 auxiliary series produced with different backbone combinations. Annual
values are shown. Grey shaded area indicates the ±1σ uncertainties of the main series.

Fig. 11. Difference between the main reconstructed series and the auxil-
iary series produced with different backbone combinations that include
RGO, Wolfer, and Schwabe. Grey shaded area represents the ±1σ un-
certainties of the main series.

observers within the BBs was performed automatically and may,
of course, differ from those listed in Tables A.1–A.7.

Figures 10 and 11 show the differences between our main
series and the different auxiliary series, described above. The
difference is mostly within the ±1σ interval. Moreover, if the
three main BB observers, i.e. RGO, Wolfer, and Schwabe, are
fixed, the differences among the reconstructed series are quite
small (Fig. 11) and, thus, the choice of other BBs is not impor-
tant. Using Koyama as the BB observer instead of RGO leads to
systematically lower counts of sunspot groups (see blue curve in
Fig. 10), but these counts are still within the 1σ error bars.

Thus, we can conclude that the method is stable regarding the
exact choice of the BB observers with the potential uncertainty
lying within the formal error bars.

4.2.2. Shape of the matrix

The majority of the calibration matrices constructed for in-
dividual observers have a shape (see Fig. 3) similar to that
expected from synthetic data with an artificial acuity thresh-
old applied (Usoskin et al. 2016a). This implies that the qual-
ity of an observer can be adequately quantified by his/her
acuity observational threshold. However, distorted behaviour

Fig. 12. Differences between the main annual reconstructed G series
and those based on the reference RGO dataset for 1874–1976 and for
1916–1976 (blue and red, respectively). The grey shaded area depicts
the ±1σ uncertainties of the main series.

was found for some observers during periods of high solar ac-
tivity, so that an observer, who is “poor” (counting less groups
than the reference observer) during periods of low and moderate
activity, may appear to report more groups during solar activity
maxima as if he/she were a better observer than the reference
observer. This is caused by the low statistics and such columns
in the matrix were replaced by the fit (Sect. 3.3). In the case in
which this behaviour occurred over an extended region of the
matrix, the observers were rejected by the code.

4.2.3. Quality of the RGO dataset

We also tested how crucial the choice of the exact reference pe-
riod of the RGO dataset is. We repeated the same analysis, but
considering the RGO dataset to start in 1874 and in 1916. Since
a change of the reference period affects the statistics used for the
calibration, allocation of some individual observers to specific
BBs was automatically changed and was different than in Ta-
bles A.1 through A.7. Figure 12 shows the differences between
the main series proposed here and these two alternative series.
The result within the Kanzelhöhe BB is not affected at all, and
for the rest of the BBs the difference is significantly smaller than
the error bars, which are on average 0.14 and 0.10 for the annual
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values using RGO data for the periods of 1874–1976 and 1916–
1976, respectively. At the same time, the use of the reference
period shortened to after 1916 significantly decreases statistics,
ignoring 42 yr of RGO data. Thus, we conclude that the present
reconstruction is also robust against the choice of the reference
period of the RGO dataset.

4.2.4. Other issues
Our method may suffer from an intrinsic problem related to a
possible overestimate of G for periods of low activity. If a sec-
ondary “poor” observer reports no spots, the method corrects it
to a finite non-zero value of G∗ (see e.g. Fig. 3). This is differ-
ent from the linear k–factor method (e.g. SvSc16), in which zero
values of a low-quality observer are always translated to zero
values of the high-quality reference observer.

We explicitly assume, similar to all other SN reconstructions,
that the observational record of any observer is error free in
the sense that they report exactly the number of sunspot groups
that should be visible to them on the Sun on a given day (cf.
Spearman 1904; Dudok de Wit et al. 2016). If this assumption
were violated (e.g. weather or health conditions may temporar-
ily reduce the acuity of the observer), the method would tend to
slightly underestimate the reconstructed values at high activity
levels, while overestimating the values at activity minima. How-
ever, at present there is no way to assess these kinds of errors and
we have to rely on this assumption. We note that this also affects
all other methods, including the linear k–factor.

We also assume (as is done in all other reconstructions) that
the observational quality of an observer is constant in time. On
the other hand, if it changed over time, especially outside the
calibration period, it may introduce some additional uncertain-
ties in the final result. However, in this work we cannot account
for that and have to make the assumption on the constancy of the
quality of the observer, as done by all the other reconstructions
as well.

5. Summary and conclusions
We present a new reconstruction of the number of sunspot
groups since 1739, along with realistic uncertainties, with daily,
monthly, and annual time resolutions. The reconstruction is
based on the daisy-chain normalization of individual observers
via so-called “backbones” built up on the records of the key
observers of different epochs. In contrast to most of the pre-
vious works, based on a simple linear k–factor scaling (e.g.
Hoyt & Schatten 1998; Clette et al. 2014; Svalgaard & Schatten
2016), our reconstruction employs a direct non-parametric cali-
bration of observers by linking the values during days of simulta-
neous observations (Usoskin et al. 2016a). This method is based
on the assumption that the quality of the data of the various ob-
servers is maintained throughout their observing period, which
may not be well validated (Lockwood et al. 2016b). This will be
studied elsewhere. We also assume, as all other methods do, that
daily records of each observer are error free. A further assump-
tion is that the main differences between the observers is due
to their different observing capabilities. This assumption is used
merely to extrapolate for the values that are missing from the
overlapping period. Thus this method works with a minimum
number of assumptions and allows for a direct comparison of
two observers with different observational skills. Uncertainties
of the reconstruction were assessed using a Monte Carlo method
applied to the derived PDFs. This approach accounts naturally
for the error propagation without making additional assumptions
(e.g. about the normality and independence of errors). In other

words, we present a highly advanced daisy-chain reconstruction
of GSN based on the most direct calibration of observers.

We tested the sensitivity of the method to the choice of the
BB observers and of the reference period. We found that the re-
construction was robust and the result remained within the pro-
vided uncertainties.

The new series has been compared with other published
GSN reconstructions, i.e. HoSc98, ClLi16, SvSc16, and UEA16.
The new series lies close to UEA16, but is slightly higher than
that in the 18th century. In contrast, it is systematically lower
than ClLi16 in the 19th century and lower than SvSc16 in the
18th century. The latter two series are based on the k–factor scal-
ing, which is shown to overestimate solar activity during solar
cycle maxima (Lockwood et al. 2016d; Usoskin et al. 2016a,b).
The new series confirms the existence of the modern grand max-
imum of activity in the second half of the 20th century, when
sunspot cycles were significantly higher than during the 19th and
18th centuries.

The new GSN series provides a robust reconstruction of so-
lar activity (the number of sunspot groups) with a realistic esti-
mate of uncertainties and forms a basis for further investigation
of centennial variability of solar activity over the last 270 yr.
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Appendix A: List of observers

In this section we list all observers that were used in each BB
series. The tables contain information on the Id of the observer
in the Vaquero et al. (2016) database, the name of the ob-
server, the first year of observations employed here, the last year

Table A.1. List of observers used for the RGO backbone.

Id Observer Start End Nd Md
332 RGO 1900 1976 28 124
341 Winkler, Jena 1882 1910 6161 2480
345 Konkoly, Ogyalla 1885 1905 3531 965
347 Stonyhurst College Obs. 1886 1935 4534 4338
352 Quimby, Philadelphia 1889 1921 10 860 7428
358 Mount Holyoke College 1890 1925 2799 2774
361 Schwab, Kremsmunster 1892 1909 3619 2060
362 Catania 1893 1918 7620 5417
366 Sykora, Charkow 1894 1910 1883 1248
368 Lewitzky, Jurjew 1895 1907 1279 647
370 Broger, Zurich 1896 1935 9492 8600
376 Woinoff, Moscow 1898 1919 2881 2758
378 Freyberg, St. Petersburg 1898 1903 530 393
380 Kleiner, Zobten 1899 1918 1965 1823
381 Kitschigin, Spitzbergen 1900 1900 102 102
382 Subbotin, St. Petersburg 1900 1908 1017 1017
383 Gorjatschy, Moscow 1901 1908 603 603
384 Larionoff, Mohilew 1901 1903 202 202
385 Struve, Charkow 1901 1902 179 179
386 Guillaume, Lyon 1902 1925 6340 6340
387 Schatkow, Kola 1902 1910 1057 1057
388 Messerschmitt, Munchen 1902 1910 1715 1715
389 Stempell, Hannover 1903 1925 2760 2760
390 Amherst College Observatory 1903 1906 672 672
392 Morosoff, Moscow 1904 1909 58 58
394 Wasnetzoff, Moscow 1905 1912 455 455
395 Belar, Laibach 1906 1906 144 144
396 Hrase, Prague 1906 1916 1748 1748
397 Brunner, Chur 1906 1906 127 127
398 Bodocs, Ogyalla 1906 1916 1674 1674
399 Ginori, Florence 1907 1907 114 114
402 Sykora, Taschkent 1907 1907 155 155
403 Biske, Zurich 1908 1909 377 377
405 Lucchini, Florence 1908 1914 1190 1190
406 Guerrieri, Capodimonte 1908 1910 943 943
407 Braak, Batavia 1909 1925 1586 1586
408 Stefko, Leysin 1909 1913 260 260
409 Schwarz, Kremsmunster 1910 1914 654 654
411 Kavan, Prague 1911 1913 771 771
412 Moye, Montpellier 1911 1925 4744 4744
413 Miloradowitsch, Pulkowo 1913 1914 143 143
414 Buttlar, Simsdorf 1914 1925 1898 1898
417 Bugoslawsky, Moscow 1916 1918 411 411
419 Reed, Kennebunk, Maine 1917 1917 33 33
427 Mt. Wilson, Full Disk 1923 1958 11 666 11 666
428 Brunner, Zurich 1926 1944 4901 4901
429 Buser, Arosa 1928 1937 2722 2722
431 Brunner, W., Zurich 1929 1944 3262 3262
432 N.A.O., Japan, k=0.75 1930 1930 244 244
433 N.A.O., Japan, k=0.65 1931 1934 920 920
434 N.A.O., Japan, k=0.70 1935 1948 1293 1293
436 Waldmeier, Zurich 1936 1947 1615 1615

of observations employed here, the number of daily observations
Nd used, and the number of overlap days of observations with the
BB observer Md (for Schwabe, Flaugergues, and Horrebow BBs,
the values for ±1 days are also given). The BB observer is listed
first and the others are sorted based on their Id.
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Table A.1. continued.

Id Observer Start End Nd Md
437 N.A.O., Japan, k = 0.55 1936 1936 207 207
438 Protitch, M., Belgrade 1936 1954 3357 3357
439 N.A.O., Japan, k = 0.60 1937 1944 2059 2059
440 Rapp, Locarno-monti 1941 1944 1298 1298
441 Valencia Obs., Valencia 1920 1956 5734 5734
442 Waldmeier, Arosa 1942 1944 308 308
443 Djurkovic, P.M., Belgrade 1946 1946 159 159
444 Oskanjan, V., Belgrade 1947 1949 331 331
445 Koyama, H., Tokyo 1947 1996 9848 5746
446 U.S. Naval Observatory 1948 1956 3211 3211
447 National Astron. Obs., Japan 1949 1993 12 243 7689
448 Simic, M., Belgrade 1949 1950 158 158
449 Dizer, M., Kandilli Obs. 1949 1954 691 691
451 San Miguel Obs., Argentina 1952 1965 1274 1274
452 Ozguc, A., Kandilli Obs. 1955 1968 1931 1931
454 Rome Observatory 1958 1989 7104 4758
458 Dogan, N., Ankara 1974 1975 455 455
464 Luft, H. 1924 1988 10 628 7536
486 Athenes Eugenides, Greece 1967 1982 2386 1877
493 Athenes III, Elias, Greece 1949 1995 7611 4441
610 Luft 2, USA 1958 1988 4992 2662
612 Looks, Chile 1967 1987 3678 1906
655 Potsdam, Germany 1950 1999 5436 2740
658 Quezon, Philippines 1957 2010 10 606 3709
667 Roma 3, Italy 1950 2000 4213 654
671 Santiago, Chile 1957 2005 3781 1356
679 Skalnate, Slovakia 1950 2010 9200 4379
681 San Miguel, Argentina 1967 2010 9400 2402
701 Uccle, Belgium 1949 2010 13 283 5033
736 Cragg, T., Los Angeles 1947 2009 17 726 8900
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Table A.2. Same as Table A.1 but for the Kanzelhöhe backbone.

Id Observer Start End Nd Md
606 Kanzelhöhe Treffen, Austria 1957 2010 12 862
435 Madrid Observatory, Madrid 1935 1986 11 931 3453
453 Lee Observatory, Bierut 1956 1975 6532 3251
459 Space Environment Laboratory 1977 1995 6922 4764
460 Debrechen Heliophysical Obs. 1977 1977 365 268
461 Catania Observatory 1978 1987 3288 2055
462 Air Force Network 1981 1991 3572 2623
463 British Astron. Assoc. 1992 1995 1002 806
470 N.O.A.A., USA 1983 1994 2713 2071
472 Astr. Centre Ardenne, Belgium 1992 2003 1220 955
473 Andries Son, Belgium 2003 2010 1187 958
474 Antares, Italy 1994 1995 170 145
476 Aguilar, Valencia, Spain 1985 1988 967 729
477 Ahnert, Germany 1981 1988 1244 975
478 Andrew Johnston, Australia 2009 2010 221 168
479 Alcober Valencia Spain 1985 1990 1177 896
481 Ankara, Turkey 1977 1990 2898 2074
483 Philippe Wittelsheim, France 1989 2010 3984 3255
487 Australian Obs. Coonabarabran, Australia 1988 2007 5717 4325
488 G.O.A.S., Argentina 1987 1993 563 421
489 Observ. Paul Ahnert, Cottbus, Germany 1992 2010 4463 3431
490 Donostia, Spain 1991 1993 225 188
491 Athenes Nat. Obser. (1) 127, Greece 1981 1998 4247 3218
492 Athenes Nat. Obser. (2) 109, Greece 1981 1999 4391 3303
494 A4 Sanvito 32 404, Italy 1986 2010 5971 4642
495 Balseiro, Uruguay 1983 1985 333 250
499 Obs.Jordano Dimitrovgrad, Bulgaria 1995 2005 1107 835
500 Bullon, Valencia, Spain 1982 2010 5225 4083
501 Bortolotti Mauro, Italia 1997 2009 3695 2989
502 Boscat Michael, Ca 2008 2010 466 397
504 Basrah, Iraq 1986 1986 228 168
505 Broxton Tony, UK 2008 2010 625 508
506 Bucharest, Romania 1981 1998 3828 2940
507 Bob Vanslooten, Netherlands 2009 2010 294 227
509 Beyazit Obser., Turkey 1981 1998 4532 3374
512 Courdurie Marcq En Baroeul, France 1989 2010 3516 2670
515 Claeys Vedrin, Belgium 1988 2010 5334 4169
518 Capricorno, Campinas, Brazil 1981 2009 3064 2233
521 Hans Coeckelberghs, Belgium 2006 2010 390 339
522 Fernandez Ruis, Santander, Spain 1992 2010 4059 3215
523 Culgoora Narrabri, Australia 1985 2010 4528 3484
524 De Backer Boom, Belgium 1983 2010 5485 4325
527 Deman, Belgium 1986 2010 568 471
529 Desrues, France 1981 1985 1289 933
530 Dubois Langemark, Belgium 1985 2010 6545 5071
533 Vasquez Carlos, Argentina 1991 2000 776 581
534 Ebro, Roquetes, Spain 1949 2010 16 266 10 698
536 Eleizalde, Caracas, Venezuela 1989 1999 3159 2411
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Table A.2. continued.

Id Observer Start End Nd Md
436 Waldmeier, Zurich 1936 1947 1615 1615
548 Observatory Frantiska, Czech Republic 1997 2010 1657 1402
549 Stefaniks, Obs. Prague, Czech Republic 1997 2010 1551 1308
550 Fujimori Nagano, Japan 1968 2010 10 558 7724
552 Gema Araujo, Spain 2000 2010 3105 2494
553 Andre Gabriel, Belgium 2006 2010 1497 1249
554 Grognard, Belgium 1981 1991 572 396
555 Gerard Dinant, Belgium 1981 2007 5031 3867
557 Gillissen, Belgium 1981 1993 2543 1925
558 German Morales, Cochabamba, Bolivia 1995 2010 4534 3530
560 Gollkowsky Rudolstadt, Germany 1982 1997 874 711
562 Schott Lutz, Gerd, Germany 2001 2010 2259 1839
563 Guillery Pulligny, France 1985 2005 2914 2395
565 Huancayo, Peru 1983 2006 1093 830
566 Hardie Jordanstown, N.Ireland 1989 1999 2427 1825
567 Hancharia, Italy 1995 1998 434 356
568 Helwan, Egypt 1967 2010 9743 6914
571 Mahmoud S, Mosque Society, Egypt 1995 2005 942 691
572 Holloman, USA 1983 2010 7498 5697
573 Hvezdaren Presov, Slovakia 1994 2010 3749 3013
576 Hazel Collett, United-kingdom 2003 2007 779 624
577 Hurbanovo, Slovakia 1969 2010 7859 6386
578 Hvezdaren Kysucke, Slovakia 1993 2010 4290 3414
581 Iskum, Budapest, Hungary 1989 1999 655 553
582 Iseo, Italy 1994 2005 1628 1389
583 Jambol, Bulgaria 1991 2003 698 532
584 Astro. De Reux Ciney, Belgium 1992 2010 3363 2647
585 Jef Claes, Belgium 2006 2010 799 654
586 Dragesco Jean, France 2002 2005 774 599
587 Jahn Jost, West-Germany 1987 1993 628 485
588 Observatory Haskovo, Bulgaria 1998 2001 240 186
589 Jorge Luis Garcia, Spain 1996 2010 1166 936
591 Johnston Gwynedd, England 1991 2009 3267 2486
592 Havana Solar Station, Cuba 2001 2010 2582 2057
595 Jeffrey Carels, Belgium 2006 2010 1027 874
596 Kawaguchi, Japan 1981 2010 8122 6151
597 Kandilli, Turkey 1950 2010 11 250 7889
598 Karjali, Bulgaria 1992 1999 552 436
599 Kladno, Czech Republic 1993 2008 3507 2855
600 Koyama, Japan 1981 1996 3250 2401
601 Observatory Rokycany, Czech Republic 1997 2001 351 291
602 Kislovodsk, Russia 1981 2010 9069 6880
607 Larguier, France 1985 1994 2274 1754
613 Lieve Meeus, Belgium 2005 2010 909 766
615 Learmouth, Australia 1983 2010 7466 5614
616 Larissa Observatory, Greece 1989 2010 4751 3837
617 Lunping, Republic of China 1981 1998 2965 2279
618 Manila, Philippines 1971 1988 5103 3562
620 Mac Kenzie, Dover, United-Kingdom 1981 2010 8389 6421
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Table A.2. continued.

Id Observer Start End Nd Md
621 Madrid, Spain 1978 1986 1036 734
622 Meadows Peter, UK 2008 2010 566 478
625 Michaux, Belgium 1986 1990 319 251
626 Murmansk, Russia 1994 2010 3041 2431
627 Milano, Italy 1994 2010 1805 1505
629 Roberto De Manzano, Italy 2003 2010 1984 1684
630 Mochizuki Urawa, Saitama, Japan 1978 2010 8007 5984
631 Mira Grimbergen, Belgium 1987 2010 2193 1719
632 Smolyan, Bulgaria 1990 2008 856 673
634 Juri Gagarin, Eilenburg, Germany 1992 2010 1818 1428
636 Obs. Copernicus, Varna, Bulgaria 1995 2002 494 352
639 Nijmegen, Netherlands 1983 2010 5344 4168
640 Barnes, Auckland, New-zealand 1985 2010 4037 3089
642 Obs. Solar Bernard Lyot, Brazil 1995 1996 178 121
645 O.M.A. Americana, Brasil 1987 1994 802 601
646 Ondrejov Observ., Czech-republic 1991 2010 4711 3890
645 O.M.A. Americana, Brasil 1987 1994 802 601
646 Ondrejov Observ., Czech-republic 1991 2010 4711 3890
649 Vlasim, Czech Republic 1989 1992 436 360
650 Palehua, Hawai 1983 1997 3512 2637
651 Perroni, Brazil 1981 1986 1413 1021
652 Pasternak, Berlin, Germany 1984 2010 5429 4331
654 Lormont, France 1991 1997 691 555
656 Observatory Prostejov, Czech Republic 1998 2010 1529 1273
657 Pyong Yang, Korea 1985 2003 4324 3306
659 Ramey, Puerto-rico 1983 2003 5957 4505
666 Rokycany – Luzicka, Czech Republic 1997 2001 424 348
668 Paulo Roberto Moser, Brazil 2010 2010 172 144
669 Rasson Mons, Belgium 1988 1997 2126 1626
670 Rodriguez, Venezuela 1986 1989 950 720
672 Siracusa II, Lapichino, Italia 1986 1995 365 294
673 Sjoerd Dufoer, Belgium 2007 2010 366 323
674 Sergio Fabiani, Bolivia 1995 1995 133 105
675 Sigma Octante, Cochabamba, Bolivia 1981 2010 5258 4049
677 Smith Marlyn, UK 2008 2010 379 313
678 San Jose, Buenos Aires, Argentina 1986 1996 702 531
683 Sobota, Slovakia 1992 2010 5258 4280
685 Saudi Arabia, Jeddah 1981 2010 5477 4154
688 Suzuki, Japan 1981 2010 7839 5954
691 Trento, Italy 1994 1994 48 48
692 Thomas Teague, United Kingdom 2005 2010 219 168
693 Central Weather Bureau, Republic Of China 1981 2010 5898 4564
694 Tangjungsari, Indonesia 1984 1989 1358 1031
696 Taipei 2, Republic Of China 1981 2005 3692 2796
697 Trieste, Italy 1967 1993 2704 2074
698 Spaninks Tilburg, Netherlands 1991 2010 3079 2424
700 Tony Tanti Naxxar, Malta 1986 1998 2271 1769
702 U.L.B., Belgium 1983 1986 594 463
705 Sliven, Bulgaria 1989 2003 1301 985
706 Ventura Mosta, Malta 1986 2003 3732 2834
709 Ruben Verboven, Belgium 2006 2010 154 135
713 Monte Mor, Brazil 2006 2010 729 625
717 Y Alarcos, Valencia, Spain 1986 1994 587 441
719 Yvergneaux Ronse-renaix, Belgium 1981 1997 3754 2844
720 Zagora, Bulgaria 1990 2010 2851 2307
721 Zamora, Spain 1993 1999 1138 865
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Table A.3. Same as Table A.1 but for the Wolfer backbone.

Id Observer Start End Nd Md
335+338 Wolfer, Zurich 1876 1928 13 533
329 Secchi, Rome 1871 1877 1530 298
333 Moncalieri 1874 1893 3598 2422
336 Aguilar, Madrid 1876 1882 1940 1381
337 Monthly Weather Review 1877 1886 2383 1786
339 Ricco, Palermo 1880 1892 3709 2668
343 Merino, Madrid 1883 1896 3221 2394
346 Vogel, Potsdam 1886 1886 162 135
347 Stonyhurst College Obs. 1886 1935 4534 1835
349 Schmoll, Paris 1888 1892 1359 1041
350 Haverford College Obs., PA 1888 1899 2063 1547
353 Carleton College Observatory 1889 1892 523 383
355 Smith Observatory 1890 1891 258 192
356 Hadden, D.E., Alta, Iowa 1890 1890 2964 2256
359 Schreiber, Kalocsa 1891 1895 1173 976
360 Zona, Palermo 1891 1891 282 233
369 Maier, Schaufling 1895 1901 632 529
373 Oliver, A.I., Boston U., MA 1897 1901 254 190
375 Jastremsky, B., Charkow 1898 1900 149 111
377 Mirkowitsch, Jaroslaw 1898 1900 135 111
379 Kaulbars, St. Petersburg 1898 1901 649 508
391 Boston University Obs. 1903 1906 359 239
401 Bemmelen, Batavia 1907 1919 2748 1910
415 Schmid, St. Gallen 1915 1915 225 173
421 Voss, Altona 1918 1918 198 145
465 Wolf, R., Zurich (small Telescope) 1858 1893 8285 4385

Table A.4. Same as Table A.1 but for the Schmidt backbone.

Id Observer Start End Nd Md
292 Schmidt, Athens 1841 1883 6970
298 Wolf, R., Zurich 1848 1893 18 311 4153
307 Carrington, London 1853 1860 1215 204
311 Weber, Peckeloh 1859 1883 6983 4035
318 Spoerer, G., Anclam 1861 1893 6281 2449
323 Ferrari, Rome 1866 1879 478 429
324 Leppig, Leipzig 1867 1881 2611 1979
325 Dawson, W.M., Spiceland, Ind 1867 1890 1623 824
328 Tacchini, Rome 1871 1900 7584 2388
330 Billwiller, Zurich 1872 1875 308 286
331 Sawyer, E.F., Cambridgeport 1872 1874 282 273
342 Janesch, Laibach 1882 1887 1164 439
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Table A.5. Same as Table A.1 but for the Schwabe backbone.

Id Observer Start End Nd Md Md ± 1 day
279 Schwabe, H. Dessau 1825 1867 11 945 11 945
255 Stark, J.M., Augsburg 1826 1836 1075 924 1029
274 Herschel, J., London 1822 1837 122 37 61
278 Von Both, G., Breslau 1825 1826 183 59 72
280 Hussey, T.J., England 1826 1837 1207 879 1073
282 Lawson, H., Hereford 1831 1832 200 151 180
283 Ruprecht, H., Ziegenhain 1832 1832 39 31 35
284 Boguslawski, P.H.L., Breslau 1832 1832 17 14 17
285 Bohm, J.G., Wien 1833 1836 101 84 96
290 Petersen, A.C., Altona 1840 1841 13 10 13
294 Peters, C.H.F., Clinton, NY 1844 1870 1308 953 1028
299 Greisbach, T.J., England 1850 1865 168 161 168
300 Sestini, Georgetown 1850 1850 42 35 39
304 Pogson, N., London 1851 1851 13 11 13
305 Tomaschek, Wien 1852 1854 15 8 15
306 Borck, Cassel 1852 1855 19 19 19
308 Flagstaff Obs., Melbourne 1857 1858 16 15 16
312 Howlett, F., England 1859 1892 766 505 537
313 Baxendall, J., Manchester 1859 1859 7 7 7
314 Coast Survey, Washington 1860 1862 475 430 460
316 Jenzer, Bern 1861 1865 585 542 566
320 Waldner, Zurich 1863 1864 41 39 41
321 Meyer, Zurich 1864 1871 912 387 397

Table A.6. Same as Table A.1 but for the Flaugergues backbone.

Id Observer Start End Nd Md Md ± 1 day
22+227 Flaugergues, H., Aubenas and Viviers 1788 1830 2101 2101
202 Bode, J.E., Berlin 1774 1822 68 26 32
218 Heinrich, P., Munich 1781 1820 396 119 216
236 Herschel, W., London 1794 1818 384 29 67
238 Gemeiner, A.T., Regensburg 1797 1797 3 1 3
245 Lindener, B.A., Glatz 1800 1827 519 114 210
246 Derfflinger, T., Kremsmunster 1802 1824 789 47 101
250 Prantner, S.M.J., Wilten 1804 1844 115 35 67
258 Tevel, C., Middelburg 1816 1836 858 89 156
260 Watts, Cape Diamond, Quebec 1816 1818 83 3 10
262 Adams, C.H., Edmonton 1819 1823 977 34 66
263 Pastorff, J.W., Drossen 1819 1833 1477 53 109
273 Arago, F.D., Paris 1822 1830 923 85 145

Table A.7. Same as Table A.1 but for the Horrebow backbone.

Id Observer Start End Nd Md Md ± 1 day
180 Horrebow, C., Copenhagen 1761 1776 1532 1532
174 Lalande, J., Paris 1752 1798 105 15 26
185 Warschauer 1764 1766 3 2 3
203 Lievog, E., Copenhagen 1776 1777 196 97 101
466 Staudach, J.C., Nuremberg 1749 1799 1172 128 234
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Appendix B: Additional table

Table B.1. Annual values of the proposed GSN series with the asymmetric 1σ intervals.

Year G σ+ σ− Year G σ+ σ− Year G σ+ σ− Year G σ+ σ−
1739 4.01 2.29 2.07 1807 2.09 0.47 0.67 1875 2.09 0.66 0.51 1943 1.63 0.43 0.35
1740 −99 −99 −99 1808 1.86 0.65 0.43 1876 1.44 0.58 0.43 1944 1.27 0.43 0.33
1741 −99 −99 −99 1809 1.52 0.54 0.44 1877 1.37 0.55 0.42 1945 3.55 0.69 0.61
1742 1.73 1.34 1.00 1810 1.08 0.49 0.42 1878 0.77 0.44 0.30 1946 8.07 0.94 0.86
1743 1.63 1.92 1.13 1811 1.27 0.55 0.42 1879 0.99 0.42 0.35 1947 11.62 1.10 1.17
1744 −99 −99 −99 1812 1.92 0.51 0.61 1880 3.03 0.75 0.64 1948 10.59 0.98 1.00
1745 −99 −99 −99 1813 2.26 0.70 0.49 1881 4.93 0.89 0.81 1949 10.04 1.01 0.91
1746 −99 −99 −99 1814 2.04 0.62 0.51 1882 4.98 0.81 0.77 1950 6.47 0.88 0.86
1747 −99 −99 −99 1815 3.22 0.76 0.64 1883 5.43 0.95 0.78 1951 5.19 0.79 0.76
1748 5.43 1.66 1.27 1816 4.26 0.75 0.78 1884 5.98 0.87 0.79 1952 2.74 0.55 0.55
1749 6.68 0.95 0.98 1817 4.20 0.80 0.76 1885 4.88 0.74 0.80 1953 1.46 0.48 0.42
1750 4.94 1.53 0.44 1818 3.78 0.80 0.75 1886 2.79 0.70 0.63 1954 0.74 0.32 0.27
1751 3.84 0.77 0.62 1819 3.04 0.76 0.62 1887 1.66 0.54 0.49 1955 3.33 0.65 0.55
1752 4.34 0.68 0.75 1820 2.42 0.63 0.53 1888 1.10 0.49 0.34 1956 10.29 1.03 1.05
1753 3.40 0.80 0.70 1821 1.87 0.58 0.50 1889 1.04 0.47 0.39 1957 13.03 1.01 0.97
1754 1.68 0.72 0.52 1822 1.56 0.60 0.42 1890 1.15 0.47 0.39 1958 13.50 1.05 1.10
1755 1.56 0.70 0.51 1823 1.28 0.55 0.36 1891 3.98 0.73 0.71 1959 11.71 0.91 0.93
1756 1.64 0.62 0.48 1824 1.60 0.64 0.39 1892 6.51 0.95 0.84 1960 8.53 1.05 0.96
1757 2.28 0.68 0.48 1825 2.54 0.72 0.60 1893 7.66 0.94 1.03 1961 4.45 0.75 0.75
1758 3.02 0.93 0.49 1826 3.67 0.93 0.77 1894 7.31 0.95 0.90 1962 2.91 0.57 0.57
1759 5.17 1.17 1.19 1827 4.71 0.96 0.85 1895 5.86 0.98 0.81 1963 2.35 0.53 0.45
1760 5.17 1.07 0.97 1828 5.54 0.97 0.95 1896 3.85 0.76 0.68 1964 1.20 0.42 0.30
1761 6.72 0.74 1.16 1829 5.71 0.95 0.94 1897 3.05 0.70 0.62 1965 1.58 0.46 0.38
1762 5.44 0.87 0.73 1830 6.03 0.99 0.99 1898 2.63 0.70 0.59 1966 3.97 0.68 0.66
1763 4.35 0.77 0.69 1831 4.34 0.94 0.85 1899 1.50 0.52 0.43 1967 7.88 0.98 0.90
1764 3.58 0.72 0.70 1832 3.08 0.81 0.69 1900 1.25 0.50 0.41 1968 8.03 0.93 0.90
1765 1.73 0.67 0.42 1833 1.77 0.61 0.53 1901 0.54 0.33 0.25 1969 7.90 0.98 0.89
1766 1.55 0.48 0.46 1834 1.70 0.71 0.50 1902 0.65 0.34 0.28 1970 8.75 0.89 0.85
1767 3.64 0.71 0.56 1835 4.69 0.91 0.82 1903 2.36 0.66 0.46 1971 6.07 0.77 0.81
1768 6.02 0.95 0.81 1836 8.32 1.08 0.95 1904 4.23 0.67 0.66 1972 5.94 0.88 0.85
1769 7.71 1.16 0.99 1837 9.47 0.83 1.17 1905 5.10 0.84 0.70 1973 3.40 0.66 0.68
1770 7.68 1.14 1.00 1838 7.29 1.00 1.05 1906 5.10 0.77 0.81 1974 3.12 0.68 0.63
1771 6.89 0.97 1.14 1839 6.49 1.03 0.93 1907 5.27 0.83 0.70 1975 1.57 0.43 0.41
1772 5.23 0.96 0.66 1840 5.12 1.01 0.86 1908 4.91 0.79 0.77 1976 1.41 0.39 0.35
1773 3.21 0.70 0.50 1841 3.40 0.77 0.77 1909 4.06 0.79 0.64 1977 2.65 0.57 0.53
1774 2.96 0.79 0.41 1842 2.42 0.79 0.60 1910 2.12 0.53 0.48 1978 7.92 1.04 0.80
1775 1.70 0.49 0.47 1843 1.35 0.62 0.42 1911 0.97 0.43 0.35 1979 11.61 1.06 1.02
1776 2.08 0.61 0.42 1844 1.78 0.68 0.54 1912 0.60 0.36 0.24 1980 10.50 1.00 1.04
1777 4.33 1.20 0.60 1845 3.61 0.86 0.80 1913 0.42 0.35 0.20 1981 10.78 1.05 1.08
1778 8.86 1.19 1.13 1846 4.57 0.94 0.85 1914 1.17 0.50 0.34 1982 8.85 0.99 0.88
1779 9.48 1.54 1.40 1847 6.82 0.92 1.18 1915 4.13 0.78 0.74 1983 5.52 0.89 0.79
1780 7.45 1.06 1.32 1848 8.55 0.87 0.97 1916 5.36 0.88 0.86 1984 3.56 0.70 0.59
1781 6.33 1.15 1.00 1849 7.89 1.06 0.90 1917 8.57 0.79 0.98 1985 1.51 0.50 0.38
1782 4.20 0.82 0.95 1850 5.96 0.93 0.91 1918 7.20 0.95 0.92 1986 1.19 0.43 0.31
1783 3.41 0.89 0.63 1851 5.99 0.98 0.96 1919 6.00 0.77 0.79 1987 2.28 0.50 0.51
1784 2.12 0.83 0.76 1852 5.48 1.03 0.96 1920 3.78 0.70 0.65 1988 6.65 0.93 0.84
1785 2.97 0.54 0.67 1853 4.33 0.87 0.82 1921 2.65 0.65 0.58 1989 10.81 1.01 1.00
1786 6.00 1.29 0.59 1854 2.55 0.82 0.66 1922 1.59 0.51 0.40 1990 10.86 1.16 1.11
1787 8.28 1.12 1.07 1855 1.33 0.49 0.47 1923 0.92 0.38 0.32 1991 11.00 0.98 1.11
1788 8.72 1.01 0.99 1856 1.10 0.60 0.38 1924 1.85 0.51 0.46 1992 7.46 1.04 0.84
1789 7.87 1.03 1.31 1857 2.95 0.76 0.70 1925 4.22 0.76 0.70 1993 4.53 0.72 0.63
1790 6.88 1.03 1.08 1858 5.44 1.05 0.87 1926 5.87 0.87 0.80 1994 2.96 0.64 0.56
1791 5.59 0.96 1.14 1859 7.94 0.94 1.02 1927 6.28 0.76 0.80 1995 1.83 0.50 0.44
1792 5.48 1.32 1.18 1860 8.34 0.95 0.99 1928 6.72 0.88 0.92 1996 1.05 0.38 0.30
1793 2.51 1.34 0.52 1861 7.01 0.97 0.96 1929 6.05 0.80 0.73 1997 2.00 0.54 0.42
1794 4.71 0.81 1.20 1862 5.50 0.91 0.88 1930 3.83 0.77 0.64 1998 5.53 0.80 0.78
1795 3.02 0.69 0.93 1863 4.74 0.87 0.86 1931 2.39 0.53 0.48 1999 7.61 1.03 0.95
1796 2.38 0.73 0.59 1864 4.47 0.88 0.85 1932 1.31 0.42 0.34 2000 9.51 1.12 0.96
1797 1.73 0.57 0.44 1865 3.23 0.87 0.76 1933 0.72 0.35 0.27 2001 9.76 1.10 1.02
1798 1.30 0.67 0.35 1866 2.27 0.71 0.58 1934 1.05 0.40 0.32 2002 9.52 1.10 1.04
1799 1.74 0.52 0.49 1867 1.41 0.54 0.46 1935 3.75 0.75 0.64 2003 6.13 0.93 0.90
1800 2.41 0.66 0.60 1868 3.62 0.86 0.71 1936 7.45 0.91 0.80 2004 4.15 0.74 0.72
1801 4.42 0.93 0.84 1869 6.21 0.99 0.88 1937 10.10 1.15 1.03 2005 3.09 0.68 0.60
1802 3.69 0.88 0.72 1870 9.24 0.88 1.02 1938 9.72 0.96 1.06 2006 1.95 0.50 0.45
1803 3.01 0.75 0.70 1871 7.93 0.89 0.89 1939 8.10 0.76 0.76 2007 1.15 0.40 0.33
1804 3.13 0.75 0.72 1872 7.58 0.85 0.93 1940 6.31 0.72 0.76 2008 0.69 0.35 0.24
1805 3.13 0.71 0.68 1873 5.27 0.95 0.79 1941 4.55 0.74 0.67 2009 0.70 0.32 0.25
1806 2.62 0.58 0.68 1874 4.18 0.78 0.77 1942 2.86 0.63 0.50 2010 2.03 0.54 0.43
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