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Abstract. Analyzing the average over a year (a) and over a month (b) of Wolf numbers and radiocarbon 
data (c), we have obtained the dimensions d of the solar attractor which are: 3.3 (a), 4.3 (b), 4.7 (c). During 
the Maunder minimum such a dimension turns out to be significantly higher: 8.0 (c); whereas during the 
period of a phase catastrophe (1792-1828) Wolf numbers averaged over a month yield d = 3.0 (b). We have 
also investigated the sensitivity of our inferences to the number of available experimental points. Positive 
values of the Kolmogorov entropy and first Lyapunov exponent explicitly show the stochastic behaviour 
of the Sun. 

1. Introduction 

Recent years have been marked by increased interest in the theory of nonlinear dynami- 
cal systems. Such deterministic systems manifest important coexisting features: both 
regular and stochastic. These properties may be clearly understood considering phase 
space trajectories which depict some phase surface, say a torus. If, for instance, a motion 
with a low frequency characterizes a regular component (a limit cycle), the trajectories 
of initially close points on the surface itself (the higher frequencies) may drastically 
diverge. If so, these directions are unstable and one cannot predict where our system 
is. This so-called deterministic chaos is to be discussed below (in what follows the terms 
'chaotic' and 'stochastic' are equivalent). Notice the principle difference of stochastic 
properties considered and a random measurement noise. The latter can be extracted 
from a data series. 

The above-mentioned fully refers to the Sun as a nonlinear generator of solar activity. 
In fact, the presence of regular periods in sunspot variations is well known, in particular 
the 11-year period. At the same time an amplitude and a phase of this cycle can not 
practically be predicted. Moreover, during the last ~, 8000 years there were several 
irregular minima of solar activity like those of Maunder, S pOrer, and Wolf (Eddy, 1976). 
Such depressed activity resulted in solar modulation changes and hence in higher 
radiocarbon concentration in tree tings (Eddy, 1976; Kocharov et al., 1983). 

To construct a model of solar activity on a long time-scale one should take into 
account the above-mentioned factors. The most general features of a solar generator 
were discussed by Gudzenko and Chertoprud (1980), who found the mean l 1-year 
cycle. In the papers of Ruzmaikin (1981) and Malinetzkii, Ruzmaikin, and Samarskii 
(1986), there was suggested an attractor which was a good theoretical fit to the minima 
of activity. A corresponding Lorenz-type system has a regime accounting for the deep 
minima of solar activity. In the present paper we evaluate a set of parameters that 
quantitatively indicate the character of this attractor. In our calculations we have used 
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the time series x( t )  of monthly averaged Wolf numbers (1749-1987) and also of yearly 
averaged radiocarbon abundances in the Earth's atmosphere A~4C (1564-1900). 

2. Methods  and Results  

The most important parameter which characterizes the attractor and its stochasticity 
is a dimension of the attractor provided it contains a fractional part. This value is close 

to the minimum number of independent variables needed to describe the system. The 
problem of choosing them is extremely complicated and we shall not be concerned with 

it in this paper. 
First of all let us transform the time series x ( t )  into the n-dimensional phase space 

vectors X~ -- X(tk) = {x(t~) . . . . .  x(t~ + (n - 1)~)}, where ~ is a delay time. According 
to Grassberger and Procaccia (1983), the dimension d can be calculated as a slope of 

curves log 2 C(r) - log 2 r: 

d(n) = A log 2 C(r) /A  log2r, (1) 

where r is the hypersphere diameter; C(r),  correlation sum: 

i 
C(r)  = -NS Z 0 (r - II xi  - xj  II), (2) 

ivsj 

0 being the Heaviside function, and N the total number of points. Supposing the 
attractor to be a geometric object, one can write C(r)  ~ r d(n). Therefore, d(n)  should 

be calculated within a linear part of the log 2 C(r)  - logzr dependence for a chosen n. 

An increase in n leads to the growth of d(n), and ifn > n s, d(n)  is saturated at d ~  d,. 
The value of ds is believed to be the correlation dimension of the attractor. Note that 
the embedding condition n > 2d s + 1 has to be obeyed. In practice, however, this 

inequality is not very rigorous. 
The typical graphs when considering this problem are shown in Figures 1 and 2. A 

slope of the rectilinear part of each curve is found by using a least-squares fit. This 
approach gives also a standard deviation in d which is roughly of the order of ~ 10%. 

Unfortunately, the greater n the narrower a straight line segment is and, therefore, 
measuring d is also harder. Especially this comment refers to the high-dimensional 

attractors, because they require a very large embedding dimension n. The measurement 
noise level can be separated by considering the smallest r region. If for r < r*, C(r)  ~ r n 

then r* could give a noise amplitude. 
The basic series used is the Wolf numbers consisting of 2868 points. The slope of 

corresponding curves have two plateaus around d ,~ 4.3 and d ~ 1.6 (Aimanova and 
Makarenko, 1988; Morrill and Voges, 1989). The former characterizes 'local' features 
of the attractor connected with its basic period (in our case it is the 11-year cycle) and 
the latter is a global modulation of it. Below we consider only the first one. One 
important question is what amount of experimental data within the basic period is 
enough for reliably determining d. Usually one uses thousands of points. As we know, 
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The typical lnC - lnr dependence for the Wolf numbers averaged over a year (1749-1987, data 

average (a), see Abstract). 
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The dimension of the attractor versus phase space embedding dimension n for the data of Figure 1. 
A saturation leads to the accurate d s estimation, see text. 
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there has been no comprehensive investigation of that problem. Therefore, we tried to 
model artificially the lack of data. Our conclusion is that -,~ 70 (or more) experimental 
points are sufficient to compute d with an accuracy better than 10~,. This important 

inference was checked by means of attractors with known properties (Henon, Lorenz, 
and Rossler). In all cases a minimum number was approximately the same. We chose 

the smallest delay time ~ needed to derive the maximum information from the data. One 
should remember that a phase space within its main period has to be filled up uniformly 
for the surface of the attractor to be depicted. Figure 3 illustrates the values of d 
obtained, against N for the series under consideration. 
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Fig. 3. The influence of experimental points number N on the dimension d s for the series considered: 
�9 -Wolf  numbers averaged over a year (a); [ ] - rad iocarbon  data (c); O -Lorenz attractor; A-Ross l e r  

attractor; , - H e n o n  attractor. 

To estimate theoretically Nmi n we make use of the formula derived by Mayer-Kress 
(1987): 

J~min '~ ' (3)  
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where S is an attractor diameter and AS is a mean distance between segment trajectories 

within a phase space. An application of this relationship to the well-known Henon- and 

Lorenz-type attractors together with their maps gives Nm~ n -- 40 and Nmi ~ -~ 80, respec- 

tively. Unfortunately, phase portraits of Wolf numbers and radio-carbon data are not 

known. Therefore, we suppose AS ~ Ar (Mayer-Kress, 1987), Ar being the mean dis- 

tance between points belonging to the attractor. This value can easily be expressed in 

terms of a mutual distance distribution function f ( r ' )  ~ (r ' )a-  ~ within a rectilinear 

segment (rmi n < r '  < / ' m a x ) :  

r m a x  r m a x  

f /f A r =  r ' f ( r ' ) d r '  f ( r ' ) d r '  " ~ - - - -  rmax ,  (r . . . .  ">r~i~). (4) 
/ d + l  

r m i n  r m l n  

Thus, for monthly- and yearly-averaged Wolf numbers we get Nmi n -~ 45 (/'max ~ 130, 

S ~ 250, and d ~ 4.3) and Nmi ~ - 70 (rma x ~ 90, S ~ 250, and d ~ 3.3), respectively. An 

analogous value for radiocarbon data is Nmi . - 75 (rm~• ~ 2, S ~ 5, and d ~ 4.7). So, 

we see a good agreement between theoretically derived values Nmi ~ and those from 

numerical calculations. 

Since Nmi n is rather small one may treat our series by splitting it into pieces in order 

to find the time fluctuations ofd. Such a procedure allows us to describe 'local' properties 

of  the attractor only. The investigation of a long time modulation requires more data 

and therefore is beyond the scope of our consideration. In Table I we summarize our 

results for the data arrays within various time periods (Ostryakov and Usoskin, 1988). 

TABLE I 

C 14 1570-1640 1645-1715 1720-1790 1800-1870 1524-1900 

dsc  4.3 8.0 4.8 4.6 4.7 

W 1749-1987 1792-1828 1848-1859 1749-1771 1848-1859 
year-avr, month-avr, month-avr, month-avr, month-avr. 

smoothed 

dsw 3.3 3.0 4.0 4.3 2.0 

One more quantitative parameter which measures the level of chaos is the 

Kolmogorov-Sinai  (or metric) entropy, K. This value is closely connected with new 

information produced by a nonlinear system if K > 0. If  we have a time realization of 
one phase space coordinate only we can use the procedure of Packard et al. (1984), to 
find a lower limit for K. As one can see in Schuster (1984), K >_ K2, where 

K2s = 1 in c ?(O (5) 
z C~ + ~ 
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and 

C~)(r) = l i r a  ~ ;,-j~= 1 0 r - k=l~ 11Xt+ k - Xj+~ 112 . (6) 

Thus, the positivity of  K 2 is a reliable criterion of a stochastisity together with d. 

According to formula (5) an increase in s results in a decrease in K2, which after reaching 

the plateau is an accurate estimation of /s  In Figure 4 is shown an example of  these 

calculations with K2, equal to ~ 0.018 bits m o n t h -  1 for the case of  (b) (see Abstract) .  
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Kolmogorov entropy for the Wolf numbers averaged over a month (1749-1810, data average (b)); 
r=  140, n= 13. 

This value obtained for the separate  parts  of  the series (we use four) coincides with that 

for the whole series (Aimanova  and Makarenko ,  1988). 
The entropy determines the chaotic properties of  nonlinear systems as a whole, 

whereas positive Lyapunov  exponents show the rate of  creating new information along 
the principle axis separately. General ly speaking that  means  that  K is a sum of  the 

positive Lyapunov  exponents 2} + ) : 

/~ = Z ,~ + ~ (7) 
i = 1  

To obtain a dominant  2] +~ we use a numerical  technique developed by Wolf  etal. 
(1985). It is 2] +~ ~ 0.03 - 0.04 bits m o n t h -  1 (Figure 5). 
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Fig. 5. A dominant value J.]+ ~ for monthly averaged Wolf numbers (1749-1987) as a function of evolution 
time (see Wolf et al., 1985) in units of z: �9 -r  = 40, n = 8; �9 - r  = 60, n = 7; x - r  = 60, n = 8; [ ] - r  = 60, 

II = 9 .  

3. Discussion 

The calculated dimension of  the attractor which describes solar activity by means of  

Wolf  numbers (a) is d s w  ,~ 3.3 (n > 7). That  is, the main features of  the activity can be 

drawn from using some deterministic set of  nonlinear equations with the number of  

independent variables not less than 4 (see Malinetzkii, Ruzmaikin, and Samarskii, 

1986). The analogous value for radiocarbon data turns to be sufficiently higher: 

d sc  ~ 4.7 (n > 9). It becomes clear if one keeps in mind that radiocarbon production 

rate variations are caused by some other additional factors (except modulation by the 

Sun): geomagnetic field, solar flares and perhaps climate. It is seen from Table I that 

there are some peculiarities in the dimensions obtained. They are: the value o f d s r  during 

the Maunder  minimum dramatically differs from those within neighbouring time inter- 

vals and is close to the chaotic one. It seems that such an increase does not result from 

the sun's behaviour because in contrast,  during the period of  phase catastrophe 

(1792-1828), which is similar to the Maunder  minimum, dsc  becomes smaller: 3.0 (b). 

N o w  we briefly dwell upon the predictability of  the solar activity. If  we know the state 

of  our system within phase space with the accuracy of  Ah then the information we get 

about that is: 

H = - logzAh, bit. (8) 

Because K = dH/dt  ,,~ H I T  then the mean time-scale on which our system can not be 

predicted is given by 

T =  - 1 log2Ah. (9) 
K 
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It is important that the dependence on A h  here is rather weak (logarithmic). Making use 
of the lower limit for K from the previous section, one can obtain the upper limit for 
T. Indeed, taking into account that Ah ~ 25 ~o for Wolf numbers averaged over a month 
T <  10 years. The more accurate T estimation can be done with 2(~ + ~ instead of K2,. 
This yields T < 5 years. So it would have been impossible to predict solar activity for 
a period longer than several years even if we had known a set of equations for it. In other 
words each 11-year cycle fully forgets the previous one. 
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