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This is anOp
Abstract – TheMaunder minimum (MM) was a period of extremely low solar activity from approximately
AD 1650 to 1715. In the solar physics literature, the MM is sometimes associated with a period of cooler
global temperatures, referred to as the Little Ice Age (LIA), and thus taken as compelling evidence of a large,
direct solar influence on climate. In this study, we bring together existing simulation and observational
studies, particularly the most recent solar activity and paleoclimate reconstructions, to examine this relation.
Using northern hemisphere surface air temperature reconstructions, the LIA can be most readily defined as
an approximately 480 year period spanning AD 1440–1920, although not all of this period was notably cold.
While the MM occurred within the much longer LIA period, the timing of the features are not suggestive of
causation and should not, in isolation, be used as evidence of significant solar forcing of climate. Climate
model simulations suggest multiple factors, particularly volcanic activity, were crucial for causing the cooler
temperatures in the northern hemisphere during the LIA. A reduction in total solar irradiance likely
contributed to the LIA at a level comparable to changing land use.
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1 Introduction

Solar magnetic activity, as historically measured by the
occurrence of sunspots and aurora, varies with the approxi-
mately 11 year Schwabe cycle (Hathaway, 2010). Solar
activity reconstructions based on cosmogenic radionuclide
data, such as 14C, 10Be and 44Ti, show that Schwabe cycles
are modulated by much longer-term variations, resulting in
grand maxima and grand minima of activity (Usoskin, 2017).
The Maunder minimum (MM), AD 1645–1715 (Eddy, 1976;
Usoskin et al., 2015), is the most recent grand minimum and
the only one covered by telescopic sunspot observations. It is
thus of great interest to solar dynamo, space weather and
terrestrial climate studies.

In both the scientific literature and wider discourse,
discussion of the MM is sometimes accompanied by mention
of the Little Ice Age (LIA), a term used to loosely describe a
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period of cooler global temperatures sometime during the 13th
to 20th centuries. More broadly, claims are often made about
the general correspondence between solar activity and global
climate variations on centennial time scales. (We deliberately
choose not to provide specific examples here as such papers are
often not focussed on a sun-climate link and no climate data is
considered; climate implications are merely mentioned in
passing, possibly as a means of motivating the general study of
long-term solar variability.) Claims of a strong, often causal,
correspondence between global climate and solar activity
commonly occur in press releases accompanying solar
variability studies, often with anecdotal arguments for support
(e.g., the occurrence of Frost Fairs on the river Thames at
London during the MM). We also note that in some cases the
link is deemed so strong that the climate term LIA and the solar
term MM are used interchangeably.

This runs counter to the scientific understanding of solar-
climate relations, which has already been covered by a number
of extensive reviews (Gray et al., 2010; Lockwood, 2010a and
references therein). By far the most direct mechanism by
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Fig. 1. A comparison of solar activity and northern hemisphere climate from AD 800 to AD 2016. Top: Sunspot number, from direct telescopic
observations (black; Lockwood et al., 2014) and reconstructed on the basis of 14C concentrations in tree trunks (red, with pink 1-sigma
uncertainty band; Usoskin et al., 2014). Taking a threshold smoothed sunspot number of 20 (dashed black line), the MM spans 1637–1719.
Bottom: Northern hemisphere temperature anomaly, DT, (relative to the 1961–1990 mean) for paleoclimate reconstructions, as presented in the
IPCC fifth assessment report (Masson-Delmotte et al., 2013). Colours, from white through red, show the probability density function (PDF),
while the white line shows the PDFmaximum value (or mode). The blue line showsDT from the instrumental record (HadCRUT4; Morice et al.,
2012). All data have been smoothed using an 11 year running mean. Taking thresholds of DT =�0.25K, �0.37K and �0.55K (dashed grey
lines) defines LIAs, LIA1, LIA2 and LIA3, respectively.
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which the Sun can influence global climate is through changes
in total solar irradiance (TSI), which alter the radiative balance
of the global climate system. As discussed in Section 3, the
effect of TSI variations on global climate is quantified through
the use of state-of-the-art climate models and detailed
attribution studies and found to be present, but smaller than
other effects. The physical reason why the changes in solar
forcing are small is the large mass, and hence thermal inertia,
of the solar convective zone, which limits TSI changes on
decadal-to-millennial timescales to the effects of surface
emissivity changes associated with structures in the solar
magnetic field (Krivova et al., 2007). But simple correlative
arguments, such as the timing of lows in solar activity and
global temperature, can still appear to be compelling and are
used to infer (implicitly or explicitly) some form of
amplification mechanism which is almost never specified.

This study brings together existing simulation and observa-
tional results to examine the relation between theMM and LIA.
We begin by examining the temporal correlation between solar
activity and global temperature variations using the latest
reconstructions. The second half of the study examines recent
climate model simulations that quantify the relative effects on
global climate resulting from variability in solar irradiance,
volcanic activity, greenhouse gases and other causes.
Page 2 o
2 Temporal correlations

Both the global temperature and solar activity records
show continual variation on a range of time scales, resulting
from a range of different physical processes with a range of
possible feedbacks; some well understood, some not. Applying
thresholds to these records for the purpose of defining discrete
periods for examination in isolation can facilitate easier
discussion and comparison. But it is not always relevant to
understanding the influence of external forcing (e.g., Meehl
et al., 2011; Medhaug et al., 2017). Indeed, the assumed
association between the MM and LIA may even partly result
from a mixing of solar and climate terminology, with named
solar activity periods such as the MM and Spörer minimum (a
period of low solar activity from approximately AD 1400 to
1550) being used as temporal yard sticks in climate studies,
even when causality is not necessarily intended (e.g.,
Luterbacher, 2001; Camenisch et al., 2016). Nevertheless,
this section examines a range of possible threshold-based
definitions for LIA and MM. The aim is not to provide a
definitive definition, but to play Devil’s advocate and assess
whether any reasonable definitions exist which produce a
temporal correspondence between the LIA and MM. We
strongly assert that even if definitions could be found which
f 10



Fig. 2. Climate and solar variations in the period from AD 1400 to AD 2016. The top two panels are the same as Figure 1, but DT data are shown
at annual resolution. The third panel shows the global atmospheric optical depth resulting from explosive volcanic activity, as reconstructed from
sulphate abundances found in ice core measurements (Crowley and Unterman, 2013). The bottom panel shows the yearly occurrence rate of
reports of the Thames freezing in London in a rolling 11 year window. The grey panel shows MM, while the red and blue lines show the dates of
demolition of the old London Bridge and the completion of the Thames embankments, respectively.
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produce a temporal correlation, it would in no way establish
physical causation between the MM and LIA.

We begin by considering solar activity around the MM.
The top panel of Figure 1 shows the sunspot record from both
telescopic observations (black) and reconstructed from 14C
abundance measurements in tree trunks (red). There are on-
going efforts to provide a more accurate long-term calibration
of the sunspot record (Clette et al., 2014; Svalgaard and
Schatten, 2016; Usoskin et al., 2016), but here we are only
concerned with the almost sunspot-free MM period, so the
precise activity levels in the 17th century are not of immediate
concern and the details of the chosen sunspot reconstruction do
not affect the definition of the MM. The black line shows the
reconstruction of Lockwood et al. (2014), which extends the
international sunspot number (with corrections) through the
MMperiod using the group sunspot record (Hoyt and Schatten,
1998). An 11 year running mean has been applied to minimise
the Schwabe cycle variations and display only the long-term
trend. The red line shows the sunspot reconstruction (Usoskin
et al., 2014) based on 14C abundance measured in living and
ancient trees by Reimer et al. (2009), with allowance for the
effect of the secular variation in Earth’s magnetic field. Due to
the effective temporal filtering associated with the carbon
sequestration processes, decadal variations are shown.
Reconstructions of 14C after 1900 is complicated by the
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burning of fossil fuels and use of atomic weapons, which
distorts the solar signal in 14C data. There is, however, good
agreement between the direct observations and 14C recon-
structions of sunspot number over most of the period of
overlap. In particular, timing and duration of the MM and the
early 19th century low (the Dalton minimum, DM) are very
similar. Note that prior to 1610, the solar activity is determined
solely by 14C abundance measurements, which may not be
fully independent of climate effects (e.g., Stuiver and Suess,
1966). Thus the MM becomes particularly important for Sun-
climate studies. As in Usoskin et al. (2014), we apply a sunspot
number threshold of 20 to define a grandminimum, resulting in
a MM starting in 1637 and ending in 1719. Applying a
different threshold or taking the telescopic record as the
standard could change the MM start date by up to a decade, but
does not significantly affect the MM end date.

The term LIA was first used to describe glacial advance
during the Holocene (Matthes, 1939), the current warm
interglacial period, which has persisted for approximately
10 000 years. As there is large regional variability in the
timings of these glacial advances, defining the LIA in this way
gives considerable variation with location. The LIA has since
become a general term for more global scales of relatively
cooler climate (Masson-Delmotte et al., 2013), though there is
still some debate about the statistical significance of this
f 10
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temperature depression (Büntgen and Hellmann, 2014; Kelly
and Gráda, 2014) and it has been suggested that the term is
scientifically misleading due to regional variations in cooling
(Landsberg, 1985). Indeed, the LIA is poorly, and often
inconsistently, defined. Typical dates range from the LIA
starting sometime between AD 1300 and 1450 and ending
between AD 1850 and 1900 (Jones and Mann, 2004). Clearly,
these start dates are much earlier than that of the MM. Within
this approximately 500 year LIA period, however, episodes of
intensification (when temperatures are inferred to have
dropped further) have also been identified, which could
potentially be better synchronised with the timing of the MM.

Here, we use surface air temperature reconstructions to
define the LIA start and end times with reduced regional
variability. The bottom panel of Figure 1 shows northern
hemisphere (NH) surface air temperature instrumental obser-
vations and paleoclimate reconstructions. Data are displayed as
the temperature anomaly (DT) with respect to the 1961–1990
mean. NH data are used as the early paleoclimate record has
much better NH sampling, thus uncertainties are lower for NH
DT than for global DT. All data have been smoothed using an
11 year runningmean (annual data are shown inFig. 2). The blue
line shows the HadCRUT4 instrumental record (Morice et al.,
2012). The colour contours give the probability distribution
function (PDF) of a combination of the 18 separate paleoclimate
reconstructions (Masson-Delmotte et al., 2013), as presented in
the International Panel on Climate Change (IPCC) 5th
Assessment Report (AR5). These reconstructions are based
onawide rangeof temperatureproxiesandhistorical records, not
all of which individually cover thewholeNHnor the whole year
(i.e., some are seasonal). The PDF incorporates both the
individual reconstruction uncertainties and the agreement
between different reconstructions. The white line shows the
PDFmaximum.The agreement between the instrumental record
and the reconstructionsduring the periodofoverlap is verygood.

Over the AD 800–2016 period there are number of notable
trends in DT. From approximately AD 900 to 1100 is a period
of enhanced DT, in the past often referred to as the medieval
warm period, but now more commonly called the medieval
climate anomaly (Vaquero and Trigo, 2012; Masson-Delmotte
et al., 2013). From AD 1000 to 1700 there is a general
downward trend in DT from approximately 0 to �0.6K. This
cooling is not steady, but appears to proceed through a number
of almost step-wise decreases, discussed further below. From
AD 1700 onwards there is a general upward trend in DT,
though the gradient and monotonic nature of the warming
increases significantly in the twentieth century, primarily due
to atmospheric greenhouse gases from the burning of fossil
fuels. Note, however, that regional variations can deviate
substantially from this hemispherically-averaged picture
(PAGES 2k Consortium, 2013; Abram et al., 2016).

Figure 2 shows the period AD 1400 to 2016. The second
panel shows the sameDT data as Figure 1, but for raw data (i.e.,
no11 year smoothing).UsingvaryingDT thresholds todefine the
LIA effectively focuses on the twomost dramatic and persistent
temperature declines, around AD 1440 and AD 1570, when DT
drops within a few decades from around�0.2K to�0.55K and
from �0.35K to �0.55K, respectively. In order to select the
period of coolest temperatures, we define the first candidate for
the LIA1 using a DT threshold of �0.25K, resulting in LIA1
spanningAD1440 to 1922, shownas the lightest grey shading in
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Figure 2. In order to select the start of the large and persistent
temperature decline in the middle of the 16th century, LIA2 is
defined using a DT threshold of �0.37K, resulting in LIA2
spanning AD 1567 to 1750, shown by the medium grey shading
in Figure 2. Clearly, both these intervals start well before the
MM. LIA2 begins during a period of rising solar activity, which
peaked around AD 1600.

Looking only at the most probable value of DT and not the
full distribution of temperature reconstructions, however, the
very lowest DT is during theMM. Thus, adopting again the role
of Devil’s Advocate, we define LIA3 using a DT threshold of
�0.55K, resulting in the period 1672 to 1708. Appendix A,
however, demonstrates that when the fullDT PDF is considered,
the temperature in LIA3 is not statistically distinct from the
previous 85 years. Furthermore, LIA3 still begins nearly
40 years after the start of the MM and ends before the solar
activity rises, implying that other factors are involved, even
allowing for a delay in the response of the atmosphere to solar
forcing.

The third panel of Figure 2 shows the northern hemisphere
volcanic aerosol optical depth (AOD) reconstructed from
sulphate concentrations in polar ice cores (Crowley and
Unterman, 2013). In contrast to the relatively poor temporal
correspondence between solar activity and northern hemi-
sphere temperature, there is clear correlation between AOD
and some of the downward steps in DT. In particular, the start
of LIA1 near AD 1440 is associated with a large volcanic
eruption, while the LIA2 period is characterised by a general
increase in smaller-scale volcanic activity. These periods of
abrupt cooling are possibly sustained by sea-ice and ocean
feedbacks (Miller et al., 2012). The post-LIA2 warming is
interrupted by the cooling periods in the early and mid-19th
century, which are similarly associated with intense volcanic
activity (though we note these cooling periods are sometimes
also attributed to the Dalton minimum in solar activity). Of
course, not all of the temperature variation can be explained by
volcanic activity, nor should it be expected to.

The Maunder minimum is often also anecdotally
associated with an increased occurrence of Frost Fairs on
the Thames in London, which is then taken as evidence of a
colder climate at the time. As pointed out by Jones (2008),
there are two major issues with this line of argument. Firstly,
the freezing of the Thames is a very poor indicator of even
regional climate on time scales much longer than a few weeks.
While decadal average temperatures were lower during the
LIA, there was nevertheless still a mixture of hot/cold
summers and winters, close to present variability (e.g.,
Overland and Wood, 2003). Indeed the Central England
Temperature record (Manley, 1974) during the LIA shows
some of the coldest winters being followed the very next year
by some of the warmest (Jones, 2008; Lockwood et al., 2011).
In addition, the freezing of the Thames at London is dependent
on a number of non-climate factors, such as flow speed, tides
and brackishness: it is not climate effects but the removal of the
old London Bridge, which had many narrow arches and
elements that essentially acted as a weir, and the improved
river flow from the embankment work which have primarily
led to a reduction in occurrence of the Thames freezing at
London since the early 19th century. A more complete
discussion of Frost Fairs and Thames freezing events is
provided by Lockwood et al. (2017). The second issue is that
f 10
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even if such data could be used as an indicator of climate,
Thames freezing events at London were not enhanced in MM.
The bottom panel of Figure 2 shows the annual occurrence rate
of all known historical reports of Frost Fairs or instances of the
Thames freezing in London in an 11 year running window (see
Lockwood et al., 2017). The freezing occurrence rates in the
periods of high solar activities before and after the MM are as
high as during the MM and the peak occurrence is roughly
70 years after the end of the MM.

Thus while simple correlative arguments should not be
used to establish causation, the timings of MM and the LIA (or
Thames Frost Fairs) do not actually show close associations.
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Fig. 3. Simulated northern hemisphere temperature changes,
smoothed with an 11 year running mean, relative to the period AD
950–1250, using the CESM-LME global climate model (data from
Otto-Bliesner et al. (2016), see Appendix B for more details of the
simulations and data processing). The different panels show
simulations with isolated climate factors, while the top panel shows
simulations performed with all of the known radiative forcings
evolving together. The black line in the top panel shows the observed
instrumental northern hemisphere temperature variations with their
associated uncertainties (Morice et al., 2012), which match the
simulations well. The bottom panel shows a simulation with no
changes to the radiative forcings. This quantifies the magnitude of
natural internal variability in the simulations in the absence of
changes in forcings. Note that the green house gas ensemble mean
reaches 1.5C in 2005, while ozone/aerosol reaches �0.85C, and that
there are different numbers of ensemble members for each set of
factors (see Appendix B). The individual simulations are shown by
thin lines and the ensemble mean by the thick lines. Grey shaded
regions represent the three LIA Periods, with the darkest interval
(LIA3) being the closest in timing to MM.
3 Physically-based climate modelling

Possibly the only way to directly quantify the role of
different factors causing climate variations is to use climate
simulators. These computer models vary from simple
representations of the energy flow through the atmosphere
(sometimes including the stratosphere in addition to the
troposphere), oceans and into space, to much more complex
models which solve physical and chemical equations to
represent the key components of the climate system in three-
dimensions. Depending on the sophistication of the model, the
atmosphere, ocean, sea ice, land ice, soils, topography, land
type, etc., can all be represented. These models can be used to
simulate the climate response to many different factors, for
example, changes in atmospheric composition, different levels
of solar and volcanic activity, and changes in land use type or
Earth’s orbit around the sun. However, they are necessarily
simplified versions of the true climate system and their
simulated response is dependent on our knowledge of past
variations in the key factors, such as solar activity.

Previous studies have shown that the general evolution of
northern hemisphere temperatures can be described by model
simulations driven by changes in human and natural factors
(e.g., Fig. 5.8 in Masson-Delmotte et al., 2013), despite
uncertainties in how climate is simulated across different
models and in uncertainties in how climate forcing factors
changed in the past. Analysis approaches that compare the
patterns of change due to different factors with those observed
and reconstructed support the important role of changes in
greenhouse gas concentrations and explosive volcanic activity,
but suggest that solar activity played a relatively minor role
(Schurer et al., 2014).

Figure 3 shows simulated changes in northern hemisphere
average temperatures in the most comprehensive set of
simulations of the climate of the past millennium to date. These
simulations are part of the CESM Last Millennium Ensemble
(Otto-Bliesner et al., 2016) and are estimates of how
temperatures would have varied given prescribed changes in
six sets of factors (or radiative forcings), namely: greenhouse
gases (GHGs), other anthropogenic (human) causes (mainly
due to sulphate particulates, termed aerosols, and changes in
stratospheric ozone induced by CFCs), total solar irradiance
(TSI), explosive volcanic activity, orbital changes and human-
driven land-use changes (see Appendix B for more details).
These are also combined to produce an estimate of climatic
variations including all these factors. There are multiple
simulations (an ensemble) in each case which only differ due to
Page 5 o
random internal fluctuations of the climate system, such as El
Nino events, that are not driven by the external factors listed
above. The thin lines in each panel represent temperature
changes in each ensemble member, and the thick lines are the
ensemble mean. Note that the changes (DT) are shown relative
to AD 950–1250 so as to explore the causes of the cooling from
that period to the LIA.

In addition, there is one simulation with no changes in
radiative forcings (labelled CONSTANT, bottom row), and
f 10
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Fig. 4. Simulated northern hemisphere temperature changes, relative to
AD 950–1250, using the CESM-LME global climate model (data from
Otto-Bliesner et al., 2016). Temperature changes have been averaged
over periods of interest for each simulation, representing the
contribution of different factors to the overall simulated cooling. The
temperature anomalies are different for different ensemble members
and the differences between them for each simulation type are due to the
internalfluctuations in climate, the typical size ofwhich are indicated by
the red bars, which are larger for shorter averaging periods.
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this is an example of how the climate varies even without any
changes to the forcing factors listed above. Note that this
simulation has many apparent bumps and wiggles due to
random fluctuations in surface temperatures, highlighting that
not every observed variation has to be due to a change in
external factors. Such internal variations are common in both
observations and climate simulations and are often associated
with temporary energy exchanges within the climate system,
for example additional heat uptake or release from the deeper
ocean (Deser et al., 2010).

The low frequency simulated changes in northern
hemisphere temperature from AD 900 to 1850 are smaller
than inferred from the proxy evidence (Sect. 2). This could
indicate an issue with interpreting the proxies, which are
indirect measurements of temperature spread sparsely over the
hemisphere, especially further back in time. Alternatively, the
difference may arise due to errors in the radiative forcings or
the simulated response to those forcings.

According to these simulations, changes in land use
contribute a slow, but near-continual, cooling of the climate
throughout AD 900 to present (although note that the
magnitude of this effect is different in other models). This
cooling is due to the removal of natural land cover (e.g. forests)
which often produces a more reflective surface (higher albedo)
that reflects more solar radiation back into space, particularly
in snow-covered regions during winter, thus cooling the
climate. Changes in the level of dust in the atmosphere likely
also play a role. Note that the removal of forests also increases
the levels of carbon dioxide in the atmosphere, which warms
the climate, but this factor contributes to the GHG component.
There is little net effect of changes in Earth’s orbit around the
Sun over the AD 900 to present interval.

More striking for the LIA periods are the simulated
temperature changes due to explosive volcanic activity, which
produce sporadic large cooling events, due to the emission of
sulphur dioxide into the upper atmosphere, forming partic-
ulates that scatter incoming sunlight. Total solar irradiance also
plays an important role, with the estimated reduction of
incoming shortwave energy producing slightly cooler temper-
atures during the LIA periods than before or after. Perhaps
more surprising is the contribution that GHGs make to the
cooling in these periods (Schurer et al., 2013). The reduction of
carbon dioxide atmospheric concentrations around 1600 may
have both a human and natural cause, perhaps related to
vegetation changes from agricultural practices, perhaps as part
of a feedback effect with more CO2 being stored in the cooler
oceans or expanded ice sheets.

After 1850, human factors play an increasingly dominant
role with increasing levels of aerosol particulates (produced by
the burning of fossil fuels) in the atmosphere acting to reflect
sunlight, and offsetting some of the warming due to increases
in GHGs.

We can quantify the role of these different factors by
averaging the simulated temperature changes during the LIA
periods and the MM (Fig. 4). These panels highlight that for
each chosen period there are multiple factors which act
together to produce the overall simulated cold temperatures.
Particularly important are the volcanic eruptions, which are the
largest factor (especially for LIA1), but reduction in total solar
irradiance is also contributing to changes in large-scale
temperatures (also see Masson-Delmotte et al. (2013) and
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Schurer et al. (2014)). At other specific times, different factors
are important � for example, the largest factor in cooler
simulated temperatures from 1610 to 1640 is a reduction in
atmospheric carbon dioxide concentrations.

The red bars in Figure 4 show the expected size of possible
variations due to internal climate variability alone, derived
from the CONSTANT simulation (see Appendix B). These are
approximately the same size as the differences between the
ensemble members in each set of simulations. This highlights
that the observed cooling could have been partly due to internal
variability, but could have also been offset by an internal
climate variation of the opposite sign. Precisely disentangling
the size of the change due to external forcings and internal
variations is challenging.

Interestingly, in the very recent period, the simulations
suggest that the observed warming is almost entirely explained
by human causes with the combined natural effects of orbital
changes, total solar irradiance and volcanic eruptions
cancelling out or perhaps even acting to cool the climate
(Bindoff et al., 2013).

4 Discussion

The Maunder minimum is the most recent grand minimum
of solar activity (Usoskin et al., 2015; Usoskin, 2017). In the
f 10
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solar and space physics literature it is often assumed the MM is
contemporaneous with, and sometimes even directly causative
of, the LIA, a cooler period in Europe and/or the northern
hemisphere. The present study has brought together the latest
solar and climate reconstructions, as well as climate model
simulations, to examine this relation. While temporal
correlation in reconstructions cannot establish causation, it
is still useful to establish whether such a correlation exists as a
basis for exploring causation further in models.

Direct telescopic sunspot observations and reconstructions
of solar activity based on cosmogenic radionuclides such as
14C in tree trunks both show the MM spanned approximately
from AD 1645 to 1715. We have used temperature thresholds
applied to the northern hemisphere paleoclimate reconstruc-
tions to define the timing of the LIA. There is a relatively
abrupt LIA onset around AD 1440, with gradual warming
possibly extending as late as the 1920s. Within this longer
envelope period (referred to as LIA1 in this study) there are a
number of intensifications of cooler temperatures. The most
prominent, LIA2, began fairly gradually around AD 1570 and
ends around AD 1750. The LIA1 temperature rise is then
further interrupted by two short-lived (∼10–30 year) drops in
northern hemispheric temperature in the early and mid-19th
century. At its deepest points, the LIA in northern hemisphere
gave average temperatures that were about 0.5K cooler than
the 1961–1990 average. Regional climate records can deviate
significantly from this picture, and display far larger
variability. While the MM does fall within the LIA2
intensification period, it clearly cannot be said to have
triggered it, as LIA2 begins approximately 80 years before the
MM. Indeed, there is no quantitative definition for a LIAwhich
can give a period of overlap with the MM that might be taken
as suggestive of direct causation.

Looking more broadly at the temporal correlations
between the solar and climate reconstructions, it is worth
noting that the extended LIA1 interval does contain both the
Spörer (approximately AD 1390 to 1540) and the Maunder
minima, two of the most intense grand solar minima in the
9,400 year record. But a credible argument for simple cause
and effect is not possible for four reasons: (1) the LIA1 period
begins very abruptly around 50 years after the start of the
Spörer minimum; (2) the LIA2 intensification period begins in
the period of relatively high solar activity between the Spörer
and Maunder minima; (3) the onset of MM appears to have no
further effect on temperature (whereas persistent cooling
would be an expected result of a prolonged minimum); and (4)
the final mid-19th century intensification occurs during a
period of relatively high solar activity. Conversely, many of the
LIA features discussed above can be readily associated with
volcanic activity, though again there is not a one-to-one
correlation. Examining the surviving reports of Frost Fairs and
Thames freezings at London, there is also no evidence of
increased occurrence during the MM.

The latest climate model simulation results are largely in
agreement with these simple correlative conclusions. In the
20th century, global temperature variations have been
dominated by anthropogenic effects. But the simulations
suggest a more complex story before the recent dominance of
the GHG forcing: many different factors probably caused the
cooler temperatures during the LIA periods and no one factor
alone is responsible. Overall, it is likely that the effect of
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volcanic eruptions was the largest influence, followed by the
drop in solar activity and changes in land use. Internal climate
variability could also have played a role, especially on smaller
temporal and spatial scales where the magnitude of random
fluctuations is larger. We again highlight that these simu-
lations, from one model, rely on particular reconstructions of
the various factors involved and that using different
reconstructions or different climate models may alter the
quantitative attribution. Of particular note for this study, larger
variations in TSI between the MM and modern era have been
proposed (Shapiro et al., 2011), which would obviously
increase the amplitude of the solar forcing. However, all long-
term TSI reconstructions are still ultimately based on either the
sunspot or cosmogenic radionuclide records, so the timing and
relative amplitudes are unchanged. Model-free, multi-regres-
sion studies suggest larger TSI variations would be inconsis-
tent with the observed temperature variation (Lockwood,
2008). Similarly, increasing the magnitude of solar forcing in
climate models results in temperature variations which are
inconsistent with the proxy reconstructions (Feulner, 2011;
Schurer et al., 2014). Furthermore, improved observations and
increased understanding of the physical processes which affect
TSI have generally led to decrease in the estimated TSI
variation between the MM and present (e.g., Lean, 2000;
Krivova et al., 2007; Lean and Rind, 2009; Vieira et al., 2011).
Thus according to these and many other similar simulations,
any conclusion of a simple causal link between only solar
activity and colder temperatures at these times is not justified.

That is not to say that there are no significant climate
implications of solar activity, particularly at the regional level
or when individual seasons are considered. We note there is
considerable observational and modelling evidence for an
increased frequency of relatively cold European winters
during low solar activity (Lockwood, 2010b; Lockwood et al.,
2011; Ineson et al., 2015; Maycock et al., 2015). It is
important to note that such regional effects primarily involve
a redistribution of heat rather than a net change. Furthermore,
the small amplitudes involved mean the link can only be
determined statistically and it is not possible to attribute
specific events.
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Appendix A: The significance of the LIA3 period

The LIA3 period, 1672 to 1708, is defined using a DT
threshold of �0.55K. The most probable value of DT in LIA3
is only around 0.05K lower than the preceding 85 years (i.e.,
back to the start of LIA2), which raises the question of whether
such a difference is statistically meaningful within the
uncertainty of the reconstructions. The top panels in Figure 5
show the paleoclimate DT PDFs centred on the 3 proposed LIA
periods. The blue lines show the duration of the LIA, while the
black line shows the 85 year interval prior to the start of the
LIA (85 years is chosen as the longest period which avoids
overlap with other LIA start dates). The bottom panels show
the PDFs over the prior and LIA periods, generated by
summing the individual annual PDFs (thus these PDFs capture
the uncertainty in DT as well as the variability within the
interval and each year is given equal weighting). The dashed
vertical lines show the means of the PDFs, though caution
should be taken as the distributions are not normal. For DT
during LIA1 and LIA2, the PDFs are distinct for prior to and
within the LIA. For LIA3, the period within the LIA is not
distinct from the previous 85 years within the uncertainties of
the data. When the data uncertainties are incorporated, the
mean DT within LIA3 is slightly higher than during the
preceding 85 years, in contrast to the mode. Thus for any
reasonable definition of the LIA, the temperature decrease
occurred at least 70 years before the onset of the MM.

Appendix B: Details of the CESM-LME
climate simulations

The full details of the CESM-LME simulations are given in
Otto-Bliesner et al. (2016), but here we give a short summary
of the assumed changes in known radiative forcings.
Fig. 5. Top: Time series of the paleoclimate DT PDFs centred on the thre
black lines shows the 85 year intervals prior to the LIA starts. Bottom: PD
Dashed lines show the means of the distributions. While the two PDFs are
previous 85 years within the uncertainties in the data.
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Greenhouse gas concentrations are adopted from measure-
ments of CO2, CH4 and N20 in Antarctic ice cores (Schmidt
et al., 2011). The volcanic activity follows the Gao et al. (2008)
reconstruction, also derived from ice core records. The total
solar irradiance is varied according to Vieira et al. (2011)
which also includes spectral variations (Schmidt et al., 2011).
The parameters of Earth’s orbit around the sun, and the
resulting changes in insolation, follow Berger (1978). Changes
in land use type and cover follow the estimates of Pongratz
et al. (2008) and Hurtt et al. (2011), which detail changes in
crop and pasture area. The changes in stratospheric ozone and
aerosols since 1850 follow those assumed in Kay et al. (2015)
and Lamarque et al. (2010), respectively.

There are different numbers of simulations for each forcing
combination: all forcings (13), GHGs only (3), other ozone-
aerosol only (4, from 1850 onwards), solar only (4), volcanic
only (5), orbital only (3), land-use changes only (3) and
constant 850 forcings (1).

The control simulation with constant forcings is used to
diagnose the drift in simulated climate due to small energy
imbalances in the climate model (Otto-Bliesner et al., 2016). A
linear trend is fitted over the period 850-2005 in the
CONSTANT simulation, and this trend (�0.002K/century)
is removed from each individual simulation before analysis.
This is a standard procedure to ensure that model drift does not
contaminate the attribution results (Tett et al., 2007).

The estimates of internal variability (red bars in Fig. 4) are
derived by examining variances in different overlapping
segments of the CONSTANT simulation of the same length as
the reference period and the particular period in question.
These are added in quadrature to produce estimates for the
expected variability contribution to the range of ensemble
members.
e possible LIA dates. Blue lines show the duration of the LIAs, while
Fs of DTwithin the LIA (blue) and in the previous 85 years (black).
statistically distinct for LIA1 and LIA2, LIA3 is not distinct from the
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