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Abstract—The reinforcement learning (RL) model has been very 
successful in behavioral sciences, artificial intelligence and 
neuroscience. Despite its fruitfulness in many simple situations, the 
RL model does not always cope well with real life situations 
involving a large space of possible world states or a large set of 
possible actions. We propose a modified version of the RL learning 
model. The benefit of this model is that the temporal difference 
prediction error can be used directly to update not only the value of 
the latest action of the learning agent, but the values of many 
possible future actions. An example application of this modified 
reinforcement learning infrastructure (MRLI) is presented for a 
customer behaviour in a complex shopping environment. 
Index Terms – MRLI, Graph Theory, Learning, Behavioral model, 
Decision-making. 

1. Introduction 

Human behavior like any other complex dynamic system 
needs some kind of rules in order to organize constantly 
flowing information. In earlier research, the goal has been to 
understand neurobiological background of human behavior 
by analyzing as simple units of behavior as possible. More 
recently, many models aim to analyze human behavior from 
its goal point of view, when the process is very complex [1], 
[2]. Reinforcement learning (RL) model has been very 
successful in behavioral sciences, artificial intelligence and 
neuroscience. This model can describe a learning mechanism 
based on prediction error signals, which measure the 
discrepancies between actual and expected outcomes [3], [4]. 
The RL theories in neuroscience assume that an agent learns 
state-action values by a trial and error procedure, and these 
values are then used as decision variables to guide choice 
[5]. 
  Ideas from RL have been applied to explain a wide range of 
behavioral phenomena both in behavioral and 
neurophysiological level [6]. In particular, correlates of 
prediction errors in the striatum have been found in multiple 
neurophysiological studies [7]–[9]. 
  Despite the fruitfulness of the RL model in many areas it 
yet has many limitations, the scaling problem being one of 
the biggest challenges [3], [6], [10]. The basic RL model 
does not cope well with domains involving a large space of 
possible world states or a large set of possible actions. 
Therefore, most of the RL models have been applied to 
highly simplified learning situations. 
  The hierarchical reinforcement learning (HRL) model is 
one of the newest attempts to describe human behavior in 
more complex situations [6].  Whereas the standard RL 
model allows an agent to select among primitive actions, the 
HRL model lets an agent also to select subroutines, each 
associated with its own behavioral policy and its own 
designated subgoals [6]. In the HRL model, actions cohere 

into subtask sequences, which fit together to achieve overall 
goals. Despite the fact that the HRL model can partially 
solve the scaling problem, which has been the basic problem 
of the standard RL models, it has still many restrictions. In 
particular, the HRL cannot be directly applied in situations, 
where there are strong correlations between different actions 
that are far away in the space of locations. The current paper 
presents a modified reinforcement learning infrastructure 
(MRLI), which aims to solve one of the problems of the 
HRL; in the current model, the temporal difference (TD) 
prediction error can be used directly to update not only the 
value of the latest action, but the values of many possible 
future actions. In this way, more realistic behavior and 
learning process of a human agent could be described. For 
example, a consumer who is intended to buy a new tablet 
computer, could make her decision after seeing only one ad 
on the internet. However, some other consumer could only 
decide after tens of advertisements, visits to online stores and 
so on. The MRLI model can be used to describe both kind of 
behavior. 

2. MRLI model 

Graph theory provides a realistic framework for 
investigating complex networks such as human behavior, 
cortical networks and traffic [11]. It is also a suitable tool in 
analyzing complex human behavior (shopping, decision-
making), in which ‘touchpoints’ are nodes and the paths 
between the nodes are edges. It is convenient to describe 
feedback and feedforward pathways between states using 
graph theoretical models. In standard RL models the driving 
force of an agent behavior depends on value function that 
equals the average sum of all future rewards received up 
until the end of the learning process [12]. However, it would 
be practically difficult to make good estimates based on the 
sum of all future reward at specific state. This is because the 
agent needs to wait until all rewards are received at the end 
of the learning process [12]. In the HRL [3] as well as in the 
current model, it is possible to count and update the values of 
the actions at every time step and at every state of the 
learning process. On empirical level, the total value of the 
actions in the system could be measured. 
  In the following, we propose a theoretical model of 
reinforcement learning. Our model is an extension of the 
reinforcement learning presented in Appendix A of the 
reference [3]. For simplicity, we present here a non-
hierarchical version of the model, but a HRL version of the 
model can be obtained by modifying the setting in a 
straightforward manner as in [3].  
  The main difference between the present setting and some 
other RL models is, that in the current model the temporal 
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difference prediction error can be used directly to update not 
only the value of the latest action, but also the values of 
actions available in other locations of the state space.  
  Thus an agent does not learn the values of actions 
individually, rather an agent must discover how the 
information at the current moment connects up with systems 
of actions available in the whole system. The predictive 
value of a single action is assessed against an entire system 
of information-outcome relationships [13], [14].  
  The model consists of two components. In mathematical 
terms, the first component is a directed multigraph G = (S,A), 
where S is the vertex set of the multigraph and denotes all 
possible `locations' of the agent and A is a set of directed 
edges between the elements of S. Each edge a ϵ A  has its 
source node s0(a) ϵ S  as well as target s1(a) ϵ S .	The purpose 
of A is to denote all possible actions of an agent acting on the 
system. Given s ϵ S, the set 

:ሻݏሺܣ ൌ ሼܽ ∈ ሺܽሻݏ|ܣ ൌ  {ݏ

is the set of all possible actions available at location s. If an 
action a ϵ A(s) is selected, the agent moves from the location 
s0(a) to a new location s1(a). Note that loops are allowed so 
that it is possible that s0(a)=s1(a). This means that choosing 
the action a does not change the location of the agent. 
  We associate a parameter r(a) to each element a ϵ A. This is 
used to denote the reward gained after completing the action 
a. For simplicity, we assume that r(a) is deterministic, but in 
general the reward function could also change in time. 
  The other component consists of a collection of action 
values {V(a)}aϵA and action weights {W(a)}aϵA maintained by 
the agent. The values of V(a) and W(a) change in time 
according to the learning strategy of the agent. The agent 
performs a random walk in S by following the edges of the 
multigraph, i.e. choosing at location s one of the possible 
actions a ϵ A(s). If the agent is at location s, given the values 
V(a') and weights W(a') for a' ϵ A(s), the agent chooses an 
action a ϵ A(s) with probability  
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where 0 < ߬ < +∞  is a temperature parameter (see the 
Remark below). 
  The key point in the model is how the values of V(a) and 
W(a) are updated as the agent explores the system. Suppose 
at time t, the agent is at the location st and the values and 
weights are Vt(a'), Wt(a'), a'ϵ A. If the agent selects the action 
a ϵ S(a), this yields the TD-prediction error 

δ = r(a) - Vt(a). 

After this, action values and weights are updated for all a' ϵ 
A using the equations  

Vt+1ൌ ௧ܸሺܽᇱሻ  ,ሺܽߙߜ ܽᇱሻ (2) 
Wt+1ൌ ௧ܹሺܽᇱሻ  ,ௐሺܽߙߜ ܽᇱሻ,   

where ߙ (a,a'), ߙௐ (a,a') are (deterministic) learning rate 
parameters reflecting possible correlations between the 
actions a,a' (see the Remark below). 

  Now that all parts of the model have been defined, the 
learning process can be described as follows: In the 
beginning the initial location s0, and the numbers V0(a') and 
W0(a') are fixed either deterministically or randomly and the 
action a ϵ A(s0) resulting to a location s1=s1(a) is then 
stochastically determined using the equation (1). Using the 
TD-prediction error, the values of W(a') and V(a') are then 
updated to W1(a') and V1(a') as in equation (2). The next 
action a ϵ A(s1) leading to a new location s2 is then selected 
using (1) with the updated values of the V:s and W:s and so 
on. In practical situations, a number of goal locations (often 
just one) are defined and the process is terminated once any 
of these locations is reached. 
  Remarks concerning the model. In some related models, S 
is called the state space. We call the elements of S locations 
since the state of the system at time t refers not only to the 
value of st, but also to the action values and weights at time t.   
  If the value of the parameter ߬ in (1) is large, the agent is 
more likely to explore actions a with small action value, 
whereas if ߬ is close to zero, the agent chooses actions with 
largest action values with high probability. 
  Large value of α(a,a') in (2) means that the TD-prediction 
error gained by performing the action a strongly correlates 
with the probability of choosing the action a' in the future. 
Whereas if ߙ(a,a'), ߙௐ(a,a') are zero (resp. small), then the 
result of action a has no (significant) effect on the 
probability of choosing a' later on. 

3. An Application of MRLI to consumer journey 

In a real market place, a lot of different stimuli are seen; 
other people, advertisements, products and the whole 
marketing environment. The growing technological 
development has made the marketing environment much 
more complicated. While consumers are exposed to an 
expanding fragmented array of marketing touchpoints across 
the media, the sales channels selling process has changed 
from sequential steps to a process that is largely 
nonsequental [15]. For example, when a consumer views a 
TV spot for a new version of a tablet computer, she can use 
her current mobile device to search for more information. 
Then pops up a paid search link for a new device and she has 
access to various reviews. When the consumer reads a 
review, she notices a display ad from a local seller, but 
decides not to click it. One of the reviews contains a link to 
online videos people have made about their new tablets. 
When viewing some of the video clips she finds also other 
ads from different brands. During her commute to work she 
realizes ads on a billboard she has not seen before and then 
receives a direct-mail piece from a company offering a time-
limited deal. She visits a local dealerships websites and 
finally decides to visit a Flagship store to buy the devise 
[15].  
  The example above describes how a consumer meets many 
marketing touchpoints before she visits a concrete shopping 
center or decides to buy online. In order to account the 
potential influence of all the stimuli experienced during the 
consumer decision process, the concept of experienced 
utility has been used  [16]. This concept refers for 
consumer's pleasure and displeasure at each moment of 
experience [16],   [17]. It is possible to model such situations 
by the MRLI model by measuring consumer's experienced 
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utility – behaviorally and neurophysiologically - at each 
moment during the whole shopping process. Here the 
locations s ϵ S correspond to the various marketing 
touchpoints. The samples in this process could have only 
two steps or tens or even hundreds of steps.  
  To set up a real test situation, the TD-prediction errors are 
measured to collect data that can be then used to estimate 
both the rewards r(a) gained from different actions a as well 
as the correlation parameters ߙ(a,a'), ߙௐ(a,a')  for different 
action pairs (a,a'). After this, the MRLI-model can be used 
to predict the typical behavior of an agent acting on the 
system. 

4. Conclusions 

Motivated by real life decision making situations, such as 
consumer behavior in a complex shopping environment, we 
have proposed a modified reinforcement learning model. The 
main advantage in the model, is the possibility to describe 
correlations between various actions available for the agent 
in different locations. The model therefore provides the 
possibility that it can account for a broader range of data 
than the previous RL and HRL –models. This makes the 
model more realistic for concrete measurements and 
applications.  
  The MRLI model is presented here on a theoretical level. 
The next step will involve testing the model on empirical 
level with human subjects and also by using computer 
simulations. This way, it is possible to decide, whether our 
model has more explanatory power than the other RL and 
HRL –models. According to the HRL model, brain computes 
two prediction error signals during the learning process. The 
global prediction error signal guides policy updating, 
whereas pseudo prediction error signals guides subroutine 
learning [5].  

While it has been shown that the striatum nuclei produce 
prediction errors at subroutine level [5], it is still unclear 
how the prediction error signals at different hierarchical 
learning levels interacts in the human brain in complex 
situations. By organizing experiments using the MRLI it is 
possible to test whether there are some other areas in the 
brain, which combine prediction error signals from all 
hierarchical levels or whether the striatum have some 
topographical organizations that could support a coarse 
hierarchy [5]. The MRLI model presented here is not, as yet, 
so deeply developed in terms of its behavioral and 
neurophysiological underpinning. However, it provides a 
promising theoretical foundation for investigating these 
issues both behaviorally and neurophysiologically in the 
complex human choice environments. Of particular interest, 
are experiments in which separate prediction error signals for 
goals and subgoals in a shopping process will be investigated 
by using the MRLI approach.  
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