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1. Introduction

If µ is a measure on R, A ⊂ R, and h is a positive function defined on some
interval ]0, r0[, we define the following densities:

D
h
(µ, A, x) = lim inf

r↓0
µ (A ∩ [x − r, x + r]) /h(r),

Dh(µ, A, x) = lim sup
r↓0

µ (A ∩ [x − r, x + r]) /h(r).

We also use the notations D
h
(µ, x) = D

h
(µ, R, x) and Dh(µ, x) = Dh(µ, R, x).

In the following three cases it is more or less justifiable to say that the function
h carries information about the measure µ:

(1) 0 < D
h
(µ, x) < ∞ for µ-almost all x ∈ R.

(2) 0 < Dh(µ, x) < ∞ for µ-almost all x ∈ R.
(3) D

h
(µ, x) = 0 and Dh(µ, x) = ∞ for µ-almost all x ∈ R.

If one of these conditions holds only in a set of positive measure but not almost
everywhere, then we may consider a suitable restriction of µ, see Lemma 1.2.

When h(r) = rs for some 0 < s < 1 and µ is the restriction of the s-dimensional
Hausdorff measure, Hs, to a set A with 0 < Hs(A) < ∞, then 1 ≤ Dh(µ, x) ≤ 2s

for µ-almost all x ∈ R. It is well known that in this case one can deter-
mine the values of the one-sided densities D

h
(µ, [x,∞[, x), D

h
(µ, ] − ∞, x], x),

Dh(µ, [x,∞[, x), and Dh(µ, ]−∞, x], x) almost everywhere. Below, the notation
µ A is used for the restriction measure given by µ A(B) = µ(B∩A) for B ⊂ R.

Theorem 1.1 (Besicovitch [1]). Let 0 < s < 1, h(r) = rs, A ⊂ R with 0 <
Hs(A) < ∞, and µ = Hs A. Then

D
h
(µ, [x,∞[, x) = D

h
(µ, ] −∞, x], x) = 0 (1.1)

and

Dh(µ, [x,∞[, x) = Dh(µ, ] −∞, x], x) = 1 (1.2)

for µ-almost all x ∈ R.
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In higher dimensions there are no “right” and “left” but then one can study
the limits D

h
(µ, C, x) and Dh(µ, C, x) for different kind of cones C = Cx. For the

Hausdorff measures these so called conical density properties have been studied
by various authors [2], [9], [13], and [11]. See also the monographs [5], [4], and
[12]. Most of the conical density results which can be found from the literature
deal with the Hausdorff measures Hs. In [16] the author studied conical density
properties of more general measures on R

n the main applications being the gen-
eralised Hausdorff and packing measures which are constructed using a suitable
gauge function, see [16]. The importance of the conical density theorems is based
on the fact that they may be used to derive geometric information of the given
measure from a given metric information. That is, the values of the measure on
small balls reflect the distribution of the measure.

In higher dimensions, the proofs become often quite technical and it is not
always easy to see the underlying ideas. Thus, it is sometimes useful to express
these ideas by giving the proofs on the real line only. In Theorem 2.1 we give
a one-dimensional proof for one of the main results of [16]. Our second result,
Theorem 3.1, is an upper density theorem for measures on the real-line which
was stated in [16] without a proof. Our results should also be considered as a
generalisations of Theorem 1.1.

For other recent results related to conical density properties of measures see
[8], [14], [6], [7] and the thesis [15].

We are going to make use of the following lemma which is a simple consequence
of the basic differentiation properties of measures. See [16, Lemma 2.6].

Lemma 1.2. Suppose that µ is a Borel measure on R so that µ([x−r, x+r]) < ∞
for µ-almost all x ∈ R with some r = r(x) > 0, A ⊂ R is a Borel set, and h is

a positive function defined on some interval ]0, r0[. Then D
h
(µ, A, x) = D

h
(µ, x)

and Dh(µ, A, x) = Dh(µ, x) for µ-almost all x ∈ A.

2. Lower densities

In the following theorem we give a simple proof for Theorem 2.2 of [16] on
R. Although the proof is easier in the one-dimensional case, the key idea is the
same in all dimensions; Consider a suitable exceptional set F and fill the space
outside F effectively by cones that touch F on their vertexes.

Theorem 2.1. Let h : ]0, r0[→]0,∞[ be a function such that

lim
r↓0

h(r) = 0, (h1)

lim
r↓0

h(r)/r = ∞, and (h2)

h(r1) + h(r2) ≥ h(r1 + r2) whenever r1 + r2 ≤ r0. (h3)

If µ is a measure on R with D
h
(µ, x) < ∞ for µ-almost all x ∈ R, then

D
h
(µ, [x,∞[, x) = D

h
(µ, ] −∞, x], x) = 0
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for µ-almost all x ∈ R.

Proof. Due to symmetry it suffices to prove that D
h
(µ, [x,∞[, x) = 0 for µ-almost

all x ∈ R. We may assume that µ is Borel regular since there is a Borel regular
measure ν which equals µ for Borel sets. We may also assume that µ is finite
since µ-almost all of R is contained in a countable collection of open intervals,
each of finite µ-measure. Let α, β > 0 and define

F = {x ∈ R : µ([x, x + r]) ≥ α h(r) when 0 < r < β} .

It is easy to see that F is closed. It suffices to prove that µ(F ) = 0 since the set
where D

h
(µ, [x,∞[, x) > 0 may be written as a countable union of this kind of

sets. Assume contrary to the theorem that µ(F ) > 0. By Lemma 1.2, there is
x ∈ F such that D

h
(µ, F, x) = D

h
(µ, x) = c < ∞. If 0 < ε < α/(2c), we may

choose 0 < r < min{r0, β} so that

(1 − ε)c h(r) < µ(F ∩ [x − r, x + r]) ≤ µ([x − r, x + r]) < (1 + ε)c h(r).

Then also

µ([x − r, x + r] \ F ) < 2 c ε h(r). (2.1)

We will next show that L(F ∩ [x, x+r]) = 0. If γ > 0, then by the assumption
(h2) there is 0 < η < β such that r < γ h(r) for all 0 < r < η. Now we may choose
disjoint intervals {[xi−ri, xi+ri]}

∞
i=1

so that L(F∩[x, x+r]\
⋃

i
[xi−ri, xi+ri]) = 0,

xi ∈ F ∩ [x, x + r] and ri < η for all i. Thus

L(F ∩ [x, x + r]) ≤ 2

∞
∑

i=1

ri ≤ 2 γ

∞
∑

i=1

h(ri) ≤ 2 γ α−1

∞
∑

i=1

µ([xi, xi + ri])

≤ 2 γ α−1µ([x − η, x + r + η]) −→ 0,

as γ → 0.
Write

[x, x + r[\F =
∞
⋃

i=1

]yi, yi + δi[,

where intervals ]yi, yi + δi[ are disjoint, yi ∈ F for all i, and
∑∞

i=1
δi = r. This

may be done since x ∈ F and L([x, x+r]∩F ) = 0. Using (h3), we obtain (Notice
that µ({x}) = 0 for all x ∈ R by (h1))

µ([x − r, x + r] \ F ) ≥ µ([x, x + r[\F ) =

∞
∑

i=1

µ(]yi, yi + δi[)

≥ α

∞
∑

i=1

h(δi) ≥ α h(r) > 2 c ε h(r)

contrary to (2.1).
�
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Remarks 2.2. 1. The above theorem is meaningful in the case (1); if D
h
(µ, x) = 0

almost everywhere, then the assertion is trivial.
2. The main applications of Theorem 2.1 are the generalised Hausdorff and
packing measures, Hh and Ph, which are constructed using a gauge function h
satisfying (h1)–(h3). If A, B ⊂ R, 0 < Hh(A) < ∞, 0 < Ph(A) < ∞, µ = Hh A,
and ν = Ph B, then (h3) implies that Dh(µ, x) < ∞ for µ-almost all x ∈ R

and D
h
(ν, x) < ∞ for ν-almost all x ∈ R, see [16]. Among others, the functions

h(r) = rs (0 < s < 1), h(r) = r log(1/r), h(r) = r log(log(1/r)) etc. satisfy (h1)–
(h3). In general, (h2) and (h3) are true if h is differentiable, h′ is decreasing, and
limr↓0 h′(r) = ∞. If h is concave, then (h3) is always true.
3. A method similar to that in [3] may be used to prove the statement of
Theorem 2.1 if for all α > 0 corresponds ε = ε(α) > 0, 0 < r1 = r1(α) ≤ r0, and
0 < t = t(α) < 1 so that αh(tr) > h(r)− h(r − tr) + εh(r) whenever 0 < r < r1.
The idea is as follows: Suppose that h fulfils the above condition, and µ satisfies
D

h
(µ, x) < ∞ almost everywhere. Assume contrary that D

h
(µ, ]x,∞[, x) > d >

0 in a set of positive µ measure. Then, using Lemma 1.2, we may find arbitrarily
small intervals [x − r, x + r] ⊂ R and points y ∈ [x, x + r] with |x + r − y| ≥ tr
so that µ([x − r, y[) > (1 − ε)D

h
(µ, x)h(r − tr) and µ([y, x + r]) > dh(tr). This

leads to µ([x − r, x + r]) > (1 − ε)D
h
(µ, x)h(r − tr) + d h(tr) which contradicts

our assumptions for a suitably chosen α and r small. However, many interesting
gauge functions such as h(r) = r log(1/r) fail to satisfy the condition desired
above and for these functions this method is useless. The proof given in [1] for
(1.1) works under the assumptions (h1)–(h3) if µ = Hh A and 0 < Hh(A) < ∞.
4. It is shown in [16, Example 2.12] that there are functions satisfying conditions
(h1) and (h2) for which the claim of Theorem 2.1 fails. It is unknown if (h3)
could be replaced by a doubling condition.

3. Upper densities

In this section we prove a very general one-sided upper density theorem for
measures on R. It shows that all measures on the real line are, in a sense,
symmetric. This result was mentioned in [16] but it’s proof has not appeared
anywhere. Our proof is straightforward and it shows that on the real line upper
densities are often easier to handle than lower densities; in the following theorem
we have no assumptions for the function h. However, we assume that our measure
is locally finite. If µ is not locally finite we have to put additional assumptions
on h and µ. For example, if µ is non-atomic and satisfies D

h
(µ, x) < ∞ for

µ-almost all x ∈ R, then the statement is still true. Our proof is influenced by
those in [10] where related questions have been studied.

Theorem 3.1. If µ is a locally finite measure on R, then for any h : ]0, r0[→
]0,∞[,

Dh(µ, [x,∞[, x) = Dh(µ, ] −∞, x], x) ≥
1

2
Dh(µ, x).
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Proof. As in the previous proof, we may assume that µ is Borel regular. One
can use standard arguments to show that the functions x 7→ Dh(µ, x), x 7→
Dh(µ, [x,∞[, x), and x 7→ Dh(µ, ] −∞, x], x) are Borel functions. Let

A = {x ∈ R : Dh(µ, x) < ∞}. (3.1)

We shall first show that Dh(µ, [x,∞[, x) ≥ Dh(µ, x)/2 almost everywhere on the
set A. If this is not the case, then we can find 0 < c < ∞ and a Borel set B ⊂ A
with µ(B) > 0 such that Dh(µ, [x,∞[, x) < c and Dh(µ, x) > 2c for all x ∈ B.
Moreover, choosing 0 < r1 < r0 small enough and using the Borel regularity of
µ (see [12, Theorem 1.10]), we find a closed set C ⊂ B with µ(C) > 0 such that

µ([x, x + r]) < ch(r) for all x ∈ C and 0 < r < r1. (3.2)

By Lemma 1.2 we may find x ∈ C such that Dh(µ, C, x) > 2c. Take 0 < r < r1

so that µ(C ∩ [x − r, x + r]) > 2ch(r) and choose y ∈ {x, x − r} for which
µ(C ∩ [y, y + r]) > ch(r). If we let z = min C ∩ [y, y + r], then µ([z, z + r]) ≥
µ(C ∩ [y, y + r]) > ch(r) contrary to (3.2). Thus Dh(µ, [x,∞[, x) ≥ Dh(µ, x)/2
for µ-almost every x ∈ A.

Next we shall show that Dh(µ, [x,∞[, x) = ∞ almost everywhere on the set

D = R \ A = {x ∈ R : Dh(µ, x) = ∞}. (3.3)

If this is not true, we may use a similar argument as above to find 0 < M < ∞,
0 < r2 < r0, and a closed set E ⊂ D so that µ([x, x + r]) < Mh(r) for all x ∈ E
and 0 < r < r2. By Lemma 1.2, we find x ∈ E and 0 < r < r2 so that µ(E ∩
[x− r, x+ r]) > 2Mh(r). Choosing y ∈ {x, x− r} with µ(E ∩ [y, y+ r]) > Mh(r)
and putting z = min E ∩ [y, y + r] gives µ([z, z + r]) ≥ µ(E ∩ [y, y + r]) > Mh(r)
leading to a contradiction. Thus Dh(µ, [x,∞[, x) = ∞ for µ-almost every x ∈ D
and consequently Dh(µ, [x,∞[, x) ≥ Dh(µ, x)/2 for µ-almost all x ∈ R = A ∪D.

It remains to prove that Dh(µ, [x,∞[, x) = Dh(µ, ] − ∞, x], x) almost every-
where and by symmetry it suffices to show that

Dh(µ, [x,∞[, x) ≤ Dh(µ, ] −∞, x], x) (3.4)

holds for µ-almost every x ∈ R. As it has already been proved that Dh(µ, [x,∞[, x) =
∞, by symmetry it may be also shown that Dh(µ, ]−∞, x], x) = ∞ for µ-almost
every x ∈ D and thus it is enough to prove that (3.4) holds for µ-almost all
x ∈ A. If this fails, arguing as before, we find 0 < r3 < r0, c > 0, and a closed
set F ⊂ A with µ(F ) > 0 so that Dh(µ, [x,∞[, x) > c for all x ∈ F and

µ([x − r, x]) < ch(r) for all x ∈ F and 0 < r < r3. (3.5)
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Since Dh(µ, x) < ∞ for x ∈ F , we see that

Dh(µ, R \ F, x) = lim sup
r↓0

µ((R \ F ) ∩ [x − r, x + r])

h(r)

= lim sup
r↓0

µ([x − r, x + r])

h(r)

µ((R \ F ) ∩ [x − r, x + r])

µ([x − r, x + r])

= Dh(µ, x) lim
r↓0

µ((R \ F ) ∩ [x − r, x + r])

µ([x − r, x + r])
= 0

for µ-almost all x ∈ F (see [12, Corollary 2.14]). This yields

Dh(µ, F ∩ [x,∞[, x) = lim sup
r↓0

µ(F ∩ [x, x + r])

h(r)

= lim sup
r↓0

(

µ([x, x + r])

h(r)
−

µ((R \ F ) ∩ [x, x + r])

h(r)

)

= Dh(µ, [x,∞[, x)

for µ-almost every x ∈ F . Thus we may find x ∈ F and 0 < r < r3 so that
µ(F ∩ [x, x + r]) > ch(r). If z = max(F ∩ [x, x + r]), then µ([z − r, z]) ≥
µ(F ∩ [x, x + r]) > ch(r) contrary to (3.5). �

Remarks 3.2. 1. A slight modification in the argument shows that the constant
1/2 in Theorem 3.1 may be replaced by lim infr↓0 h(r)/h(2r). Of course, this is
an improvement only in the case when lim infr↓0 h(r)/h(2r) > 1/2.
2. If h(r) = rs (0 < s < 1), then combining the above remark and the density
bound Dh(H

s, A, x) ≥ 1 for Hs-almost all x ∈ A provided 0 < Hs(A) < ∞
yields Dh(H

s A, [x,∞[, x) = Dh(H
s A, ]−∞, x], x) ≥ 2−s which is still weaker

than (1.2). However, if h : [0, r0[→ [0,∞[ is a function with h(0) = 0, A ⊂ R

with 0 < Hh(A) < ∞, then the proof given in [1] in the case h(r) = rs may be
generalised to show that Dh(Hh A, [x,∞[, x) = Dh(Hh A, ]−∞, x], x) = 1 for
Hh-almost all x ∈ A.
3. The above proof relies strongly on the geometry of the real line and rather
different methods are needed when proving upper conical density theorems for
measures in higher dimensions.
4. Theorem 3.1 is meaningful in all cases (1), (2), and (3). In particular, it says
that Dh(µ, [x,∞[, x) = Dh(µ, ]−∞, x], x) = ∞ almost everywhere if Dh(µ, x) =
∞ almost everywhere. This is the case often for the measures P s A where Ps is
the s-dimensional packing measure, A ⊂ R with 0 < Ps(A) < ∞, and h(r) = rs.
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