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Abstract

Contactless 3D hand biometrics offers hygienic and con-
venient approaches for biometric recognition. This paper
investigates a distinctive feature representation using 3D
surface normal information for more accurate 3D hand
biometric identification. Prior research on contactless 3D
hand biometric identification largely incorporates 3D depth
and surface curvature information to recover discrimina-
tive features. Our investigation presented in this paper in-
dicates that extracting distinctive features from surface nor-
mal information, which can also be directly obtained from
low-cost photometric stereo based imaging systems, can of-
fer a computationally simpler alternative and is therefore
highly desirable. The directions of neighbouring surface
normal vectors can encode frequently observed irregular
ridge and valley regions, which can enable more accurate
surface feature description. Comparative experimental re-
sults presented in this paper validates the effectiveness of
the proposed approach.

1. Introduction

Biometric recognition is an important research area with
many useful applications such as the immigration inspec-
tion, access control and wearable electronics [1]. Face [2,
3], fingerprint [4, 7], and iris [6] are the most popular bio-
metric identifiers for the automated recognition of human
identities. Other biometric identifiers such as palmprint [9,
10] and finger knuckle [11-14], which provide easily visi-
ble patterns and can be acquired simultaneously, have also
emerged for biometric recognition. Beside the choices of
biometrics, several research efforts including 3D ear [15,
16], 3D face [17-19], 3D palmprint [20, 23] and 3D finger-
print [21] have shown that using also the 3D domain enables
richer information and therefore higher recognition perfor-
mance. These observations motivate us to address two in-
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Table 1: Comparative summary of various feature represen-
tations for 3D finger knuckle and 3D palmprint recognition.

teresting biometric problems, i.e. 3D finger knuckle and 3D
palmprint recognition.

Among the literature on contactless 3D palmprint recog-
nition, Surface Code [23] and Binary Feature [20], are 3D
feature descriptors for palmprint and are also applicable for
finger knuckle. Surface Code discretizes the Shape Index
[24, 25] using four binary values which are compared using
Hamming distance. However, the distance between the en-
coded feature values lacks theoretical support, which will be
further elaborated in Section 2. Binary Feature discretizes a
surface type using a binary value computed from ordinal re-
lationship in a small neighbourhood. However, the 3D sur-
face orientation or direction information, which is known to
describe local discriminative patterns, has not been consid-
ered in both methods. In addition, although learning based
approaches [27, 29, 30] have emerged as a popular and ef-
fective solution for many computer vision problems, such
performance can be largely degraded by the large variance
between the distribution of gallery (train) and probe (test)
samples. Therefore, this paper attempts to develop a new
feature representation of surface texture and directional in-



formation from a mathematical perspective.
In order to develop a more robust feature descriptor for

3D hand biometrics, it is crucial to have an insight into
the 3D imaging technologies. The photometric stereo re-
construction approach is shown to offer a low cost and ac-
curate reconstruction of surface details [5]. With such an
approach, surface normal images can be recovered while
depth images can be obtained by the integration of sur-
face normal vectors. If the source surface normal vectors
are used instead of the depth map, we can alleviate the
need for the additional integration, which also induces re-
construction errors (well-known as the integrability prob-
lem [28] in the literature). Existing work on contactless 3D
biometric identification largely incorporated 3D depth and
surface curvature information to recover discriminative fea-
tures, while surface normal information, which is also in-
variant to pose and illumination variations, has not gained
adequate attention. Therefore, this paper attempts to inves-
tigate the possibility of using surface normal information
for more robust 3D feature description. The key contribu-
tions from this paper can be summarized as follows:

This paper investigates the possibility of using surface
normal information instead of depth information for more
robust 3D surface feature description and introduces a new
3D feature representation, surface normal direction, for
more accurate 3D finger knuckle and 3D palmprint recog-
nition. We can alleviate the need for computing the depth
maps by using the source 3D information, i.e. surface nor-
mal vectors. The directions of local surface normal vec-
tors can also distinctively describe irregular ridge and val-
ley patterns, which depict discriminative features for bio-
metric recognition. Unlike the two aforementioned meth-
ods, our method also extracts orientation or direction infor-
mation in addition to the texture information. Comparative
experimental results presented in section 4 of this paper il-
lustrate superior performance over the evlauted methods on
both the contactless 3D finger knuckle and 3D palmprint
databases, which validates our theoretical arguments that
surface normal information provides robust information, as
well as the effectiveness of the proposed feature representa-
tion and matcher. Table 1 presents a comparative summary
of various feature representations for 3D finger knuckle and
3D palmprint recognition. The recognition accuracies pre-
sented in table 1 are averages of the experimental results for
3D finger knuckle and 3D palmprint recognition. In order
to ensure the reproducibility of this work, implementation
codes are also made publicly available [8].

2. Related Work
The literature of 3D palmprint recognition provided solid

foundations for the problem investigated in this paper. The
Surface Code descriptor [23] is a 3D feature descriptor with
a template size of four bits per pixel. Shape indexes [24, 25],

containing curvature information, are discretized into four
binary values. However, such discretization and matching
scheme lacks justifications. For example, a surface type can
be discretized into nine levels. For such encoding scheme,
level 7 is encoded as ‘0111’ while level 8 is encoded as
‘1000’. The similarity score between these two seemly
close-together levels are computed to be 4 using the Ham-
ming distance measure. In contrary, level 0 is encoded as
‘0000’. Despite this surface type is far different from level
8, the similarity score is computed to be 1. The Binary Fea-
ture descriptor [20] is another 3D feature descriptor with a
template size of one bit per pixel. Depth images are convo-
luted with ordinal filters for the computation of feature val-
ues. The major strength of this method is its efficiency due
to the simple computation and small template size. How-
ever, this simple feature descriptor may not fully utilize the
discriminative information. For, example, the orientation or
direction information, which is known to contain discrimi-
native information, is not considered. The effectiveness of
using similar surface type based mehods has been verified in
a recent reference on 3D palmprint recognition [32]. Mean-
while, other more recent work [26, 33] also attempted to
describe 3D surfaces for finger knuckle recognition. An-
other work utilized the collaborative representation with L2

and L1 norm regularizations [27]. This approach requires
the learning of feature vectors from gallery (training) sam-
ples. If the variations between the gallery and probe (test)
samples are significant, it is challenging to learn the robust
feature representations.

Deep learning technologies have been actively investi-
gated and the effectiveness are validated in various appli-
cations including object recognition [29-30] and biometrics
[34-35]. VGGNet [29] is one of the representatives from
Convolutional Neural Network (CNN) approach, which in-
vestigated the use of a small kernel size (i.e. 3 × 3) for ex-
tracting robust features. ResNet [30] is another more recent
CNN based method, using residual components for enhanc-
ing the training of deep neural networks. However, such
machine learning methods usually suffer when the varience
of statistical distribution between training and testing sets is
large. For example, if the acquisition of gallery and probe
images is from different cameras, those image variations
can constitute the differences between the training sets and
testing sets. Furthermore, a certain level of customized de-
velopment is required on specific biometric problems. For
example, a research on iris recognition [34] considers the
biometric aspects of using binary templates and the bit-
shifting strategy for matching the templates. Therefore,
deep learning approaches on the problems addressed in this
paper are highly interesting and will be promising future
research areas.



3. Surface Normal Direction
To begin with the introduction of this feature representa-

tion, figure 1 shows an illustration using a convex and a con-
cave case with surface normal vectors in a cross-sectional
view in the smallest possible neighbourhood, i.e. 3 in a di-
mension. The black vectors represent the central vectors
of the respective neighbourhood while the red vectors rep-
resent the neighbouring vectors. The dotted black vectors
are in the same direction as the central vector for better
visualization. The core idea to differentiate between the
fundamental convex (corresponding to ridges) and concave
(corresponding to valleys) cases are to consider whether the
pair of neighbouring surface normal vectors are pointing in-
wards or outwards respective to the central surface normal
vector.

Figure 1: Illustration of Surface Normal Direction Feature
with a convex and a concave case.

Firstly, surface normal information of 3D hand biomet-
rics can be obtained from 3D reconstruction using a photo-
metric stereo approach. Figure 2(a) shows the surface nor-
mal vectors on a 3D finger knuckle surface. Surface normal
vectors contain rich information and can be used to accu-
rately describe the discriminative feature of a surface. After
that, the surface normal vectors are transformed locally and
the surface normal direction feature can be computed ac-
cording to the core idea illustrated in figure 1. A pair of fea-
ture templates is matched by a specially designed matcher
for obtaining the similarity score. The details of each pro-
cedure will be introduced in the following subsections.

3.1. Surface Normal Transformation

In order to consider whether the neighbouring surface
normal vectors are pointing inwards or outwards, we can
first transform the central surface normal vector of each
neighbourhood of m×m pointing to the top view direction.
For simplicity, we only consider m to be 3. It is equivalent
to consider a sliding window with size m×m on a surface
normal vector image. For each sliding window, we have
to find a transformation matrix so that the central surface

normal vector in the window is transformed to be pointing
the top direction, which is a trivial mathematical problem.
Let n be a unit 3D surface normal vector; t = [0 0 1]T

be the vector pointing the top direction; R be a rotational
matrix such that:

t = R n (1)

Let c and d be a cross product and a dot product of n and t
respectively:

c = n× t = [c1 c2 c3]T (2)

d = n · t (3)

The rotational matrix R is computed as:

R = I + g(c) + g(c)2
1

d + 1
(4)

where I is an identity matrix, g(c) is the skew-symmetric
cross-product matrix of c:

g(c) =

 0 −c3 c2
c3 0 −c1
−c2 c1 0

 (5)

All the surface normal vectors in the sliding window are
transformed by multiplying R:

n′
i,j = R ni,j (6)

where n′
i,j is the transformed vectors, i, j is the indexes rep-

resenting one of the surface normal vectors in a sliding win-
dow. Figure 3 shows a graphical example of the transfor-
mation. After the transformation, the central surface nor-
mal vector must be pointing the top direction. If a larger
neighbourhood is considered, each of the neighboring sur-
face normal vectors can also be transformed by multiplying
the same R.

3.2. Feature Representation in Four Directions

The transformed surface normal vectors in a sliding win-
dow are used for computing a feature value, defined as the
Surface Normal Direction feature, in each of the four possi-
ble directions. These four directions can be observed in fig-
ure 2(b). When considering a pair of neighbouring surface
normal vectors in one direction, both vectors pointing in-
wards to the central vector represents a concave case. Simi-
larly, both vectors pointing outwards from the central vector
represents a convex case (illustrated in figure 1). The con-
cave cases describe valley regions while the convex cases
describe ridge regions. Let N be a three-dimensional matrix
with each entry representing the transformed surface nor-
mal vector in a region of m×m, m = 3.

N =

n11 n12 n13

n21 n22 n23

n31 n32 n33

 (7)



(a) (b) (c)
Figure 2: Illustration of: (a) surface normal vectors on a finger knuckle surface; (b) four directions and their respective
backward and forward values; (c) the projection vectors for computing b3.

(a) (b)

Figure 3: Surface normal vectors over a neighbourhood re-
gion of a pixel: (a) original; (b) transformed.

where nij = [nx
ij ny

ij nz
ij ]

T , i, j ∈ {1, 2, 3}. Note that
n22 = [0 0 1]T because of the transformation procedure
presented in section 3.1. We firstly consider the horizon-
tal direction as the first direction. We define b1, f1 be a
backward and a forward value for the first considered direc-
tion (horizontal) respectively. Figure 2(b) shows the four
considered directions (horizontal, vertical and two diago-
nals) and their respective spatial location for the concern-
ing backward and forward values. While the backward and
forward values can be first computed from the transformed
surface normal vectors, we can utilize those values for the
computation of the final feature value. For the first consid-
ered direction (horizontal), only the horizontal dimension
(x-dimension) in the surface normal vectors are considered
for the computation. We directly obtain the backward and
forward values of this direction as follows:

b1 = nx
21 , f1 = nx

23 (8)

Similarly, we define b2, f2 be a backward and a forward
value for the second considered direction (vertical) respec-
tively. For this direction, only the vertical dimension (y-
dimension) in the surface normal vectors are required for

the computation:

b2 = ny
12 , f2 = ny

32 (9)

For the other two diagonal directions, both the horizon-
tal dimension (x-dimension) and the vertical dimension (y-
dimension) in the surface normal vectors are required for
the computation. We first consider the direction from top
left to bottom right. We define b3, f3 be a backward and
a forward value for this diagonal direction respectively. In
order to compute b3 and f3, the projection vector on the
diagonal direction is required. For example, consider the
computation of b3 (illustrated in Figure 2(c)). Let a be the
shortest distance between the coordinate (nx

11, n
y
11) and the

line y = x, or x− y = 0. The distance a is:

a =
|nx

11 − ny
11|√

1 + 1
(10)

The magnitude of b3 is:

|b3| =
√

(nx
11)2 + (ny

11)2 − a2 (11)

The sign of b3 is:

sgn(b3) = sgn([nx
11, n

y
11] · [1, 1]) (12)

Combining equations (10)-(12) we can compute b3 as:

b3 =

√
(nx

11)2 + (ny
11)2 − (

nx
11 − ny

11√
2

)2 · sgn(nx
11 + ny

11)

(13)
Similarly, we can also compute the forward value f3 as:

f3 =

√
(nx

33)2 + (ny
33)2 − (

nx
33 − ny

33√
2

)2 · sgn(nx
33 + ny

33)

(14)
where sgn is a sign function. The last considered direction
is from the top right to the bottom left. We define b4, f4 be
a backward and a forward value for this diagonal direction



respectively. The line equation of this direction is y = −x,
or x + y = 0. Similar to the last diagonal direction we can
compute b4 as:

b4 =

√
(nx

13)2 + (ny
13)2 − (

nx
13 + ny

13√
2

)2 · sgn(nx
13 − ny

13)

(15)
and f4 as:

f4 =

√
(nx

31)2 + (ny
31)2 − (

nx
31 + ny

31√
2

)2 · sgn(nx
31 − ny

31)

(16)
After obtaining all the four pairs of backward and for-

ward values, we can compute the final feature values for
each of the four directions respectively. The feature values
are computed as follows:

pk =


1, bk > 0 and fk < 0

3, bk < 0 and fk > 0

2, otherwise

(17)

where k ∈ {1, 2, 3, 4} represents the four considered direc-
tions (horizontal, vertical and two diagonals). The pixel-
wise feature value pk represents a concave (valley) case
when pk = 1; a convex (ridge) case when pk = 3; an am-
biguous (uncertain) case when pk = 2. The computation
of this pixel-wise feature value is repeated for all the pixels
in a surface normal image. Finally, we can obtain a feature
template with a dimension of the image height × the image
width × four.

In summary, when the backward value is larger than zero
and the forward value is less than zero, it indicates that both
neighboring surface normal vectors are pointing inwards,
which corresponds to a concave/valley case. Similarly, the
cases of ridge and uncertainty can also be encoded, which
will result in four feature images, each with three encod-
ings, for the four considered directions as feature templates
for matching. Therefore, when comparing a pair of feature
images, the encoding resulted from each direction can be
compared individually. For a more efficient implementa-
tion, the magnitude of the forward and backward values can
be ignored. Figure 4 presents plots of concave (in red) and
convex (in blue) features on 3D images, while the ambigu-
ous (uncertain) features remains in grey. These visualiza-
tions demonstrate the detection of the concave and convex
regions on both 3D finger knuckle and 3D palmprint sur-
faces.

3.3. Matching Pairs of Feature Templates

The Surface Normal Direction feature consists of four
values per pixel, with each value to be either 1, 2, or 3. In or-
der to maximize the performance of using such feature rep-
resentation, a specific similarity matrix is also developed. It

is expected that all three cases (i.e. concave, convex, and
ambiguous) provide helpful information for discriminating
identities. For a pair of pixels from the probe and gallery
templates, they are considered to be similar if their values
are the same. Let A and B be two templates of surface nor-
mal direction feature with size M × N × 4. Let aijk and
bijk (i ∈ [1,M ], j ∈ [1, N ], k ∈ [1, 4]) be the feature value
(i.e. 1, 2, or 3) in A and B respectively. Let h be a distance
function:

h(aijk, bijk) =
|aijk − bijk|

2
(18)

where h ∈ {0, 0.5, 1}. A zero response from h indicates
that same feature values are obtained from a pair of tem-
plates (considered to be similar), while a unity response
from h indicates that both concave and convex case occur in
the pair of templates (considered to be not similar). The re-
maining case, response from h equals 0.5, indicates the case
that ambiguous case is obtained in one template, while ei-
ther concave or convex case is obtained in another template.
Those cases are quite unstable and would degrade the recog-
nition performance. Therefore, those cases are ignored for
the similarity computation. We assume that each of the four
considered directions have a equal importance. Let o1 and
o0 be the occurrence of h equals 1 and 0 respectively, for
a pair of templates A and B. The comparison score s for
comparing the similarity between this pair of templates is
computed as:

s =
o1

o1 + o0
(19)

Ideally, s equals 0 indicates the most similar case while
s equals 1 indicates the most dissimilar case. By partially
ignoring the cases of h equals 0.5, the similarity scores are
more robust. To account for pose variations, rotational or
translational shifting can be applied on probe images. The
minimum of the matching scores from matching the shifted
versions of the probe images with the gallery images are the
final matching score.

4. Experiments and Results
The performance of our proposed method is evaluated

using the verification, closed-set and open-set identification
experiments. The results are presented using receiver oper-
ating characteristics (ROC) curve, cumulative match char-
acteristics (CMC) curve, and false negative identification
rate (FNIR) versus false positive identification rate (FPIR)
curve. The FNIR and FPIR can be computed as follows
(corrected equations in [22]):

FPIR(T ) =
1

K
ΣK

i=1H(T − si1) (20)

FNIR(T ) = 1− 1

M
ΣM

i=1H(T − sic) (21)



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4: Sample concave (valley, in red) and convex (ridge, in blue) features on depth images: (a)-(d) finger knuckle,
direction 1-4; (e)-(h) palmprint, direction 1-4.

(a) (b)

Figure 5: A pair of sample images acquired from the same
subject in the contactless 3D finger knuckle database.

where T is the threshold; K is the number of searches for
non-enrolled images; M is the number of searches for en-
rolled images; si1 is the score of rank 1 of ith search; sic is
the score of the true class of ith search; H is the unit step
function.

4.1. Validation using Contactless 3D Finger
Knuckle Database

The HKPolyU 3D finger knuckle images database [33]
provides two-session 3D images from 130 subjects. For
the verification and identification experiments, 105 subjects
with two sessions are used. An evaluation protocol for two
sessions’ data is adopted, i.e. first session data is used as the
training sets and second session data is used as the testing
sets. This protocol generates 105 × 6 = 630 genuine and
105× 6× 104 = 65520 imposter matching scores.

We first present the experimental result of ablation stud-
ies in figure 6 showing that the feature templates of each
direction can be used alone for personal recognition. How-
ever, when using the two templates from direction 1 and 2
together, the recognition performance is better than using
each of the template alone. Furthermore, when using the
four templates together, the recognition performance is the
best.

The effectiveness of our proposed method is validated

Figure 6: Experimental results of ablation studies on the
contactless 3D finger knuckle database.

by comparing with the baseline methods. We have selected
two baseline methods which were developed for extracting
3D surface features for palmprint recognition. These two
methods (Surface Code [23] and Binary Feature [20]) have
been reported to be effective in extracting surface valley and
ridge patterns and therefore it is reasonable to adopt these
methods as the baselines. The depth images required for
these methods are computed using Frankot Chellappa algo-
rithm [28] and the parameters are optimized for achieving
the best performance.

The two session images from this database has been
acquired using two different camera lenses, so that those
images contain a large variance of statistical distribution.
Therefore, it is challenging for learning based approaches.
For example, figure 5 shows a pair of sample images from
the same subject in this dataset. We can observe that these
images contain the same biometric pattern but are visu-
ally very different. From our preliminary experimenta-
tions on learning based methods, including VGGNet [29]
and ResNet [30], those methods can learn very well on the



(a) (b) (c)
Figure 7: Experimental results on the contactless 3D finger knuckle database: (a) ROC; (b) CMC; (c) FNIR versus FPIR.

gallery samples (i.e. the first session images) but perform
poorly on the probe samples (i.e. the second session im-
ages). Therefore, those methods are not selected as base-
lines for the performance comparison in this section.

Figure 7 shows the comparative experimental results us-
ing our method and the two baseline methods. For veri-
fication scenarios (Figure 7(a)), our proposed method sig-
nificantly outperforms both baselines. The improvement of
performance is more obvious for tight security situations,
where the false acceptance rate is very small. For closed-set
identification scenarios (Figure 7(b)), the performance of
our method and Surface Code are similar, while our method
produces a higher rank-1 accuracy. However, unenrolled
identities may be presented to practical systems, therefore
evaluation of identification rates with open set produces
more reliable results for practical situations. For this eval-
uation (Figure 7(c)), 105 subjects (80%) are considered as
enrolled users while another 25 subjects (20%) are consid-
ered as unenrolled users. Our method outperforms both
baselines by producing a lower false negative identification
rate. Similar to the ROC curves, the improvement of per-
formance is more obvious for tight security situations.

4.2. Validation using Contactless 3D Palmprint
Database

The HKPolyU Contactless 2D/3D Palmprint Database
[23] provides 1770 palmprint images acquired from 177
subjects in two sessions. Five 3D images are available for
each subject per session. Figure 8 shows a pair of sample
images from the same subject in this dataset. The evalua-
tion protocol generates 885 (177 × 5) genuine and 155760
(177× 176× 5) imposter matching scores. For the open set
identification evaluation, 142 subjects (80%) are considered
as enrolled users while the remaining 35 subjects (20%) are
considered as unenrolled users.

The required surface normal images for the proposed
method are computed by simply taking the gradient from
the available 3D depth images in this database. Our method
is compared with three state-of-the-art methods, Binary
Feature [20], Surface Code [23], collaborative representa-

(a) (b)

Figure 8: A pair of sample images acquired from the same
subject in the contactless 3D palmprint database.

tion with L2-norm regularizations (CR L2) [27]. Similar to
the finger knuckle experiments, VGGNet [29] and ResNet
[30] do not perform well on the probe samples (i.e. the
second session images) and are therefore not selected as
the promising baseline for the performance comparison in
this dataset. It can be observed that the experimental results
presented in [20] incorporates a masking procedure. How-
ever, the details are not clearly described in the paper. In
order to ensure fairness in comparison, our evaluations on
all methods and our method are without masks. The param-
eters are also optimized for achieving the best performance.
For CR L2, we first investigate the variations between their
reported database and our evaluated database. Since both
databases provide 3D depth images with the same resolu-
tion (square size images with 128 pixels), it is reasonable
to employ the same parameters provided along with CR L2,
which is already optimized for their reported database.

Figure 9 presents the comparative experimental results
using our method and the four baseline methods. Our
method generally outperforms all baseline methods in ver-
ification (Figure 11(a)), closed-set identification (Figure
11(b)), and open-set identification (Figure 11(c)) experi-
ments. These results indicate that our proposed approach
using surface normal images is effective for both 3D finger
knuckle and 3D palmprint recognition. Additional experi-
mental results using statistical significant tests for the area
under ROC curve with the method described in a reference



(a) (b) (c)
Figure 9: Experimental results on the contactless 3D palmprint database: (a) ROC; (b) CMC; (c) FNIR versus FPIR.

[31] are presented in the supplementary file.

5. Conclusions and Further Work

This paper introduces a 3D feature extraction approach
which utilizes both texture and direction information using
surface normal vectors for more accurate 3D hand biomet-
ric recognition. By considering whether the neighbouring
surface normal vectors are pointing inwards to or outwards
from the central vector, the irregular local 3D surface char-
acteristics, i.e. ridge and valley patterns, which constitute
to the distinctive features for biometric recognition, can be
effectively encoded (the core idea is demonstrated in figure
1). The experimental results presented in this paper using
verification, closed-set and open-set identification scenar-
ios have validated the effectiveness of the proposed method
for both 3D finger knuckle and 3D palmprint recognition.
The learning based approaches does not offer promising
performance, probably because of the challenges induced
from the cross-lenses and two-session imaging condition of
the dataset. Such imaging condition can simulate the real-
world applications that acquire challenging images using
different camera setups for the same subject in more than
one-session, which generates significant variations between
the distribution of gallery and probe samples. Despite deep
learning based approaches are popular for various computer
vision problems as well as biometric problems, a certain
level of customized development is required on specific bio-
metric problems. It is highly motivated to investigate the
application of deep learning approaches into the problems
addressed in this paper.

The key limitations of the proposed approach lie in its
relatively bulky feature extraction procedures and thus a
longer computational time. However, such a drawback can
be justified by the more effective recognition performance
as demonstrated in the experimental results presented in this
paper. This paper provides two important insights that sur-
face normal vectors can provide a reliable source of infor-
mation for 3D biometrics, while the curvature information
in diagonal directions in addition to horizontal and vertical

directions is also helpful. Our future studies will investigate
the necessity of each procedure and develop more advanced
feature representation and matching methods. The repre-
sentation of 3D surfaces can also be extended to the study
of textured like patterns from human body of those acquired
during medical imaging.
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