
 1 

  

Abstract—Contactless 3D finger knuckle is an emerging 

biometric identifier, which can provide a promising alternative for 

personal identification. To maximize its potential, feature 

representation and matching are the two critical components 

towards high performance. A recent pioneering work is limited by 

its preliminary design of the feature descriptor and the tailor-

made similarity function. Although this method demonstrates 

decent recognition performance, there is room for improvement. 

This paper advances the state-of-the-art method by introducing a 

new curvature based feature descriptor and a method to compute 

the similarity functions based on the statistical distribution of the 

encoded feature space. Our proposed feature representation 

utilizes an insight in 3D geometry for accurately encoding the 

curvature information. When computing the similarity between a 

pair of templates, we compute the similarity function from the 

probability mass distributions of the encoded feature space. Our 

proposed approach is scalable to templates with different sizes, 

and more importantly outperforms the state-of-the-art methods 

significantly, which is demonstrated in a publicly available 

database of 3D finger knuckle. In addition, we also demonstrate 

the generalizability of our approach by evaluating on other 

publicly available biometric datasets of similar patterns, i.e. 3D 

palmprint and finger vein.  

 
Index Terms—hand biometrics, 3D finger knuckle recognition, 

feature extraction, templates matching  

 

I. INTRODUCTION 

IOMETRIC recognition is an important research problem 

which leads to enormous solutions to modern civilian 

applications. Among various biometric identifiers, the use of 

finger knuckle images [1-4] has attracted increasing attention 

recently probably due to its decent recognition accuracy, 

efficiency, and the high convenience of acquiring hand 

biometric images. This emerging technology can be deployed 

in conjunction with the popular fingerprint recognition systems 

and can provide a range of applications such as authentication 

for immigration check, unlocking computers as well as online 

transactions. One of the popular research trends in biometrics 

attempted to incorporate 3D domain with the widely explored 

2D intensity domain, because such domain contains rich 

information meanwhile those 3D images are usually more 

robust and illumination invariant. This approach has been 

studied in a wide range of biometric research work such as 3D 

fingerprint [5], 3D palmprint [6-8, 28, 43-45], 3D face [9-10], 
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3D ear [11-12] and recently also 3D finger knuckle [13]. 

However, there is plenty room for improvement on utilizing 3D 

finger knuckle as a promising biometric identifier. 

In order to maximize the potential of contactless 3D finger 

knuckle in biometric recognition, feature representation and 

matching are the two critical components towards high 

performance. A recent pioneering work on 3D finger knuckle 

recognition [13] introduced a simple feature descriptor using 

the surface gradient derivatives computed from 3D surface 

normal images in two principal directions, i.e. horizontal and 

vertical. The feature templates with sizes two-bits per pixel are 

compared by using a hand-crafted similarity function with the 

considerations of partially similar because the two binary 

encodings for a pixel are not necessarily equally important [14]. 

Similarity functions in this paper refer to the pixelwise mapping 

function for computing the similarity score between a pair of 

discrete template values. An example of such function can be 

referred to Table 2 in [13]. Although this method demonstrates 

decent recognition performance, there is room for 

improvement. For example, this method only considers the 

curvature features in two directions. Furthermore, the 

introduced similarity function is tailor-made for the proposed 

two-bits feature representation and cannot adapt to other feature 

representation with different sizes, e.g. four-bits per pixel. In 

short, this method has a limited flexibility and scalability to 

feature representation with larger sizes, which can be a 

bottleneck for further development. With the increasing 

demand for security requirements in modern applications, more 
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TABLE I 

SUMMARY OF KEY DIFFERENCES BETWEEN A STATE-OF-THE-ART METHOD 

AND OUR PROPOSED APPROACH.  

 
Surface Gradient 

Derivatives (TPAMI20) 
This Paper 

Feature 

Extraction 

Using the derivatives of 

surface gradient 

Using 3D geometry 

of surface normal 

vectors 

Feature 

Comparison 

Using a hand-crafted 

similarity function 

Using a similarity 

function generated 

from statistical 

distributions 

Recognition 

Accuracy 
High Very high 

Computational 

Complexity 
Low Slightly higher 
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accurate, scalable and generalizable solutions are highly 

desirable.  

A. Our Work and Key Contributions 

This paper advances the state-of-the-art 3D finger knuckle 

recognition method in two-folds, i.e. enhancing both the feature 

representation and matching. Firstly, we develop a new feature 

descriptor based on 3D geometry, which is capable for 

accurately describing curvature features of 3D finger knuckle 

surfaces in multiple directions. When increasing the number of 

considered directions, the feature representation can encode 

more discriminative characteristics. However, when the size of 

feature templates increases, it is more difficult to develop a 

similarity function for comparing a pair of feature templates. If 

Hamming distance is employed, the recognition performance 

will be limited by the ineffective similarity function because the 

two binary encodings for curvature refers to convex and 

concave, which can be of unequal importance, e.g. concave 

regions in 3D finger knuckle indicates the line patterns and 

therefore they are expected to weight more. Alternatively, if we 

design a similarity function with the consideration of partially 

similar as in [13], the size of the similarity function grows 

exponentially with the size of the feature templates. For 

examples, if the feature template is of size 1-bit per pixel, 

comparing a pair of such pixels constitutes to four possible 

matching cases (‘00’, ‘01’, ‘10’, ‘11’). In [13], the feature 

template is of size 2-bits, which constitutes to sixteen possible 

matching cases. When we attempt to increase the size of the 

feature templates to 4-bits per pixel, a similarity function with 

256 possible matching cases must be considered. Therefore, we 

develop a new approach for computing the similarity function 

based on the statistical distribution of the encoded feature 

space. Table I summarizes the key differences between the 

state-of-the-art 3D finger knuckle recognition method and our 

proposed approach. Figure 1 shows an overview of the key 

technical components introduced in this paper. Implementation 

codes for the proposed approach are also made available [33]. 

Key contributions of this paper can be summarized as follows:  

(i) This paper introduces a new feature representation 

approach for accurately encoding 3D finger knuckle surface 

patterns. The proposed approach utilizes an insight in 3D 

geometry that, for a pair of neighboring surface normal vectors, 

the distance between their heads is shorter than the distance 

between their tails if the surface is concave. In contrast, the 

distance between their heads is longer than the distance between 

their tails if the surface is convex. Therefore, we can distinguish 

whether a local shape is convex or concave along a specified 

direction and encode the curvature information as binary 

templates of preferable sizes for further comparisons. The size 

of this feature representation can be scalable, depending on the 

number of considered directions in respective applications.  

 (ii) This paper also addresses another critical problem, i.e. 

what is the best similarity function for matching binary 

templates. When computing the similarity between a pair of 

binary templates, it is a common approach to compute the 

averages of pixelwise outcomes from exclusive-or operators, 

i.e. Hamming distance, which is adopted as one of the most 

reliable computation by many state-of-the-art feature 

descriptors in biometrics [5, 8, 19]. However, this approach lies 

on an assumption that the two encodings for a pixel, e.g. zero 

and one, are equally important so that matching a pair of zero-

pixels and a pair of one-pixels produce the same outcome, i.e. 

zero. However, this assumption may not be true, especially for 

palmprint and finger knuckle features. For examples, a research 

[14] on palmprint and finger knuckle recognition developed a 

binary feature descriptor for encoding line and non-lines 

regions. It is shown that despite both regions provide helpful 

information for discriminating identities, a pair of one-pixels 

(lines regions) indicates a higher confidence for similarity than 

a pair of zero-pixels (non-lines regions). Another research [13] 

on finger knuckle recognition introduced a similarity function 

accommodating two-bits per pixel per feature template with the 

considerations of partially similar when matching a pair of zero-

pixels. However, these methods either require an extensive 

 
Fig. 1. Overview of the key technical components introduced in this paper. The hemispheres associated with surface normal vectors 𝑣1 and 𝑣2 represents the 

range of possible surface normal directions. The similarity function is represented by a matrix of size 16×16 where each entry refers to a pixelwise similarity 

score for a possible matching case, displayed using a jet colour map. 
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parameter tuning procedure or cannot adapt to other feature 

descriptors, which limits their generalizability and scalability to 

feature template with larger sizes. Therefore, we develop a new 

method for computing the similarity function from the 

probability mass distributions of the encoded feature space (i.e. 

frequencies observed in each of the possible feature values). 

Our proposed approach is scalable to binary templates with 

different sizes. 

 (iii) The effectiveness of our proposed approach is validated 

on a publicly available database of 3D finger knuckle. Our 

approach outperforms the state-of-the-art methods 

significantly. In addition, we also demonstrate the 

generalizability of our approach by evaluating on other publicly 

available biometric datasets of similar patterns, i.e. 3D 

palmprint and finger vein. Our approach is generalizable to 

different biometrics. 

Rest of this paper is organized as follows: Section II reviews 

the related work of the 3D finger knuckle recognition problem. 

Section III presents the technical detail of our proposed feature 

representation. Section IV discusses the technical detail of our 

approach to compute the similarity function. Section V presents 

the comparative experimental results on three publicly available 

databases of 3D finger knuckle, 3D palmprint and finger vein. 

Section V concludes this paper and outline the possible future 

research work. 

II. RELATED WORK 

Contactless 3D finger knuckle is one of the most exciting and 

emerging biometric identifiers due to its capability to offer 

decent accuracy, efficiency and convenience. The use of such 

images for biometric recognition has recently attracted 

increasing attentions. The first attempt to use this biometric 

identifier was in a research studying finger dorsal surfaces for 

biometric recognition [20]. However, the recognition 

performance with 3D finger knuckle images was not 

compelling, probably because of the low-resolution 3D images 

and the generic feature descriptor employed, i.e. the Shape 

Index [21-22], for extracting 3D finger knuckle features. 

Another more recent work [13] developed a new 3D finger 

knuckle database and investigated several important aspects of 

3D finger knuckle recognition including the effective feature 

extraction methods, the possibility of spoofing attacks, and the 

individuality of this biometric identifier. It can be observed that 

there are enormous potentials of using this emerging biometric 

identifier for personal recognition. However, there are plenty 

room for improvement. For instance, the proposed feature 

descriptor utilized a limited amount of information, e.g. simple 

gradients are computed in only two directions. In addition, the 

introduced similarity function is rather hand-crafted and is 

neither generalizable to other feature templates nor scalable to 

different sizes of feature templates.   

While there is a lack of research work on 3D finger knuckle 

recognition, many promising related work can be referenced to 

the literatures of conventional finger knuckle recognition [1-4] 

and 2D/3D palmprint recognition [6-8, 15-17, 34-35]. A survey 

paper [1] comprehensively summarized previous research work 

on finger knuckle recognition. On the other hand, Surface Code 

[7], Binary Shape [8] and collaborative representation-based 

framework (CR_L2) [6] provided promising baselines for 3D 

palmprint recognition. These methods can also be applied on 

the problem addressed in this paper, 3D finger knuckle 

recognition. However, the surface gradient derivative (SGD) 

feature descriptor [13] further advance those methods and 

achieved the state-of-the-art recognition performance in 3D 

finger knuckle recognition. 

Besides the mainstream of developing feature descriptors, 

similarity measure is also an important problem in image 

retrieval [42], texture recognition [27, 36] and biometric 

recognition [15, 23-24, 39-40]. For example, over a billion 

people worldwide have been enrolled in iris recognition 

systems using binarized templates [18]. While binarized feature 

representation is widely employed to describe various 

biometrics, Hamming distance is widely adopted for computing 

the similarity function between a pair of binary templates. Such 

examples can be observed from a range of biometric feature 

descriptors, e.g. Surface Code [7] and Finger Surface Code [5] 

describe a palmprint and a fingerprint respectively using four-

bits per pixel; Binary Shape [8] and UniNet [19] describe a 

palmprint and an iris pattern respectively using one-bit per 

pixel. Since the importance of two levels (e.g. zero and one 

pixels) during the binary template encoding may not be equal, 

adjusting the outcome score for matching a pair of zero/one 

pixels may offer higher recognition performance. Such problem 

has been firstly investigated in a reference [41] and further 

verified in another recent work [14] on biometrics, which 

develops a weighted similarity function so that the matching for 

a pair of one-pixels (line region) worth more attention. Another 

work [13] further developed a similarity function for its two-

bits feature representation with the consideration of partial 

similarity for matching a pair of zero-pixels (non-line region). 

However, there are no systematic studies to scientifically 

determine/formulate an appropriate similarity function for 

matching binary templates with unequal importance in the 

encodings.  

III. FEATURE REPRESENTATION FOR 3D FINGER KNUCKLE 

This section presents the technical detail of our proposed 

scalable feature representation for 3D finger knuckle 

recognition. An ideal feature representation can encode the 

most discriminative information, meanwhile can tolerate a 

certain level of noise. For finger knuckle recognition, it is 

expected that the most discriminative information lies in the 

irregular finger knuckle lines with varying thickness, which 

constitute to a unique biometric pattern for each individual. 

However, it is challenging to accurately detect those lines due 

to the existence of noises such as illumination variations. With 

the help from 3D information in addition to the 2D intensity 

images, it is relatively easier to detect those lines because of the 

association with valley/concave regions. Such 3D information 

can be considered as a set of 3D surface normal vectors. 

However, that reconstructed 3D information from intensity 

images generally contains errors inherited from illumination 

noises and 3D estimations. It is yet challenging to accurately 

distinguish whether a region is convex, or concave given the set 
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of surface normal vectors. A recent research on 3D finger 

knuckle recognition [13] attempted to utilize the derivative of 

surface normal gradient for the decision of convex or concave 

shapes. Therefore, it is motivated to further investigate the 

possibility of an improved feature representation. 

To begin with, consider a pair of unit surface normal vectors, 

denoted as 𝑣1 and 𝑣2. We utilize an insight in 3D geometry that, 

for a pair of neighboring surface normal vectors, the distance 

between their heads is shorter than the distance between their 

tails if the surface is concave. In contrast, the distance between 

their heads is longer than the distance between their tails if the 

surface is convex. Let the 3D coordinate of the tail of 𝑣1 to be 

(𝑥1
0, 𝑦1

0, 𝑧1
0)  and the elements of 𝑣1  to be (𝑥1

1, 𝑦1
1, 𝑧1

1) . 

Therefore, the 3D coordinate of the head of 𝑣1  is (𝑥1
0 +

𝑥1
1, 𝑦1

0 + 𝑦1
1, 𝑧1

0 + 𝑧1
1). Similarly, let the 3D coordinate of the 

tail of 𝑣2  to be (𝑥2
0, 𝑦2

0, 𝑧2
0) , the elements of 𝑣2  to be 

(𝑥2
1, 𝑦2

1, 𝑧2
1), and the 3D coordinate of the head of 𝑣2 is (𝑥2

0 +
𝑥2

1, 𝑦2
0 + 𝑦2

1, 𝑧2
0 + 𝑧2

1). We first compute the distance between 

their tails as follows:  

𝑑0 = √(𝑥1
0 − 𝑥2

0)2 + (𝑦1
0 − 𝑦2

0)2 + (𝑧1
0 − 𝑧2

0)2        (1) 

Next, the distance between their heads is computed as: 

𝑑1 = √
(𝑥1

0 + 𝑥1
1 − 𝑥2

0 − 𝑥2
1)2 + (𝑦1

0 + 𝑦1
1 − 𝑦2

0 − 𝑦2
1)2

+(𝑧1
0 + 𝑧1

1 − 𝑧2
0 − 𝑧2

1)2
    (2) 

These variables can be observed in the center part of Figure 1. 

In order to detect the irregular finger knuckle lines, we can 

encode the corresponding condition, i.e. concave/valley 

regions, when the distance between their heads is shorter than 

the distance between their tails, i.e.  if 𝑑1 < 𝑑0. Therefore, the 

feature value 𝑓 can be easily computed as: 

𝑓 = {
1   ,   𝑑1 < 𝑑0

0   ,   𝑑1 ≥ 𝑑0
                            (3) 

For a local region, we can iteratively consider a pair of 

neighboring surface normal vectors and compute the feature 

value 𝑓 . For examples, in each sliding window of size 3×3, 

taking the pair of surface normal vectors from the left and right 

can enable the computation of the feature value 𝑓 in horizontal 

directions, while taking the pair of surface normal vectors from 

the top and bottom can enable the computation of the feature 

value 𝑓 in vertical directions. For a 3D surface normal image, 

each considered direction constitute to one-bit binary feature 

image. Therefore, the final size of the feature template depends 

on the number of considered directions. This feature 

representation method can produce an arbitrary size of the 

feature template for further comparison. In our applications on 

3D finger knuckle and 3D palmprint, we considered four 

directions, i.e. horizontal, vertical and both diagonal directions. 

The method of comparing the similarity between a pair of 

feature templates will be discussed in the following section. 

IV. FEATURE MATCHING USING A SIMILARITY FUNCTION  

A. Similarity Function Formulation 

This section presents a scientific approach for computing the 

similarity function for comparing a pair of binary feature 

templates. Our hypothesis is that, the encoding with lower 

density deserves more attention. For instance, when the binary 

encodings with one correspond to line regions of 

palmprint/finger knuckle patterns and the encodings with zero 

correspond to the non-line/background regions, line regions are 

usually less dense than non-line regions and the matching for a 

pair of one-pixels can result a higher confidence for similarity 

than the matching for a pair of zero-pixels. With such an insight, 

we attempt to model the similarity function with the 

considerations of densities of each of the encodings. Our 

approach attempts to compute the probability mass functions 

for three ideal situations: ideally random, ideally matched and 

ideally non-matched; and utilizes these probabilities for 

computing the final similarity function.  

In our applications on 3D finger knuckle and 3D palmprint, 

we considered four directions, which constitutes to feature 

templates of size four-bits per pixel. In order to improve clarity 

for presenting this model, it is better to deliver the necessary 

components using a more simplified version. Therefore, in the 

analysis of this section, we select a state-of-the-art feature 

descriptor [13], which describe a 3D finger knuckle using a 

feature template with two-bits per pixel. The feature templates 

with size 𝛽  bits per pixel ( 𝛽 = 2)  constitute to 2𝛽  (i.e. 4) 

possible feature representations, i.e. ‘00’, ‘01’, ‘10’, ‘11’. Let 𝑋 

be a random variable for the 2𝛽   possible feature 

representations and 𝑥𝑖𝑗  be the random values for 𝑋, 𝑖, 𝑗 ∈ {0,1}. 

The probability mass function of the random variable 𝑋 can be 

easily observed from the average occurrences of each possible 

feature representations in the training samples.  

𝒑𝑿(𝑥𝑖𝑗) = 𝑃(𝑋 = 𝑥𝑖𝑗)                         (4) 

When matching a pair of templates 𝑨 and 𝑩, each with 𝛽-bits 

per pixel, there are 22𝛽  (i.e. 16) possible matching cases for 

each pixel. Let 𝐴 and 𝐵 be the random variables for the four 

possible feature representations in templates 𝑨  and 𝑩 

respectively, and 𝑎𝑖𝑗  and 𝑏𝑖𝑗 be the random values for 𝐴 , 𝐵 , 

𝑖, 𝑗 ∈ {0,1}. We first consider the ideally random situation. Let 

𝑅  be a random variable for the 22𝛽  possible matching cases 

when templates 𝑨  and 𝑩  are of random, and 𝑟𝑖𝑗𝑘𝑙  be the  

random values for 𝑅 , 𝑖, 𝑗, 𝑘, 𝑙 ∈ {0,1} . The probability mass 

function of the random variable 𝑅 can be computed as: 

𝒑𝑹(𝑟𝑖𝑗𝑘𝑙) =
𝒑𝑨(𝑎𝑖𝑗)×𝒑𝑩(𝑏𝑘𝑙)+𝒑𝑨(𝑎𝑘𝑙)×𝒑𝑩(𝑏𝑖𝑗)

2
          (5) 

 
Fig. 2. Probability mass functions of three situations: ideally random, ideally 

matched and ideally non-matched. 
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=
𝒑𝑿(𝑥𝑖𝑗)×𝒑𝑿(𝑥𝑘𝑙)+𝒑𝑿(𝑥𝑘𝑙)×𝒑𝑿(𝑥𝑖𝑗)

2
          (6) 

= 𝒑𝑿(𝑥𝑖𝑗) × 𝒑𝑿(𝑥𝑘𝑙)                         (7) 

Secondly, we consider the ideally matched situation, i.e. all 

feature representations between the two templates are the same. 

Let 𝑀 be a random variable for the 22𝛽 possible matching cases 

when templates 𝑨 and 𝑩 are ideally matched, and 𝑚𝑖𝑗𝑘𝑙  be the 

random values for 𝑀 , 𝑖, 𝑗, 𝑘, 𝑙 ∈ {0,1} . The probability mass 

function of the random variable 𝑀 is: 

   𝒑𝑴(𝑚𝑖𝑗𝑘𝑙) 

=
𝒑𝑨(𝑎𝑖𝑗)×𝑃(𝐵=𝑏𝑘𝑙|𝐴=𝑎𝑖𝑗 & 𝐴=𝐵)+𝒑𝑨(𝑎𝑘𝑙)×𝑃(𝐵=𝑏𝑖𝑗|𝐴=𝑏𝑘𝑙 & 𝐴=𝐵)

2
 (8) 

= {
1

2
(𝒑𝑨(𝑎𝑖𝑗) + 𝒑𝑨(𝑎𝑘𝑙)) , 𝑖𝑓 𝑖 = 𝑘 𝑎𝑛𝑑 𝑗 = 𝑙 

0 , 𝑒𝑙𝑠𝑒
                (9) 

= {
𝒑𝑿(𝑥𝑖𝑗) , 𝑖𝑓 𝑖 = 𝑘 𝑎𝑛𝑑 𝑗 = 𝑙 

0 , 𝑒𝑙𝑠𝑒
                                      (10) 

Thirdly, we consider the ideally non-matched situation, i.e. 

all feature representations between the two templates are 

different, while having the same distribution as 𝑝𝑋. Let 𝑁 be a 

random variable for the 22𝛽  possible matching cases when 

templates 𝑨 and 𝑩 are ideally non-matched, and 𝑛𝑖𝑗𝑘𝑙  be the 

random value for 𝑁 , 𝑖, 𝑗, 𝑘, 𝑙 ∈ {0,1} . The probability mass 

function of the random variable 𝑁 is: 

 𝒑𝑵(𝑛𝑖𝑗𝑘𝑙) 

=
𝒑𝑨(𝑎𝑖𝑗)×𝑃(𝐵=𝑏𝑘𝑙|𝐴=𝑎𝑖𝑗 & 𝐴≠𝐵)+𝒑𝑨(𝑎𝑘𝑙)×𝑃(𝐵=𝑏𝑖𝑗|𝐴=𝑏𝑘𝑙 & 𝐴≠𝐵)

2
  (11) 

= {

0 , 𝑖𝑓 𝑖 = 𝑘 𝑎𝑛𝑑 𝑗 = 𝑙 

1

2
(𝒑𝑨(𝑎𝑖𝑗) ×

𝒑𝑩(𝑏𝑘𝑙)

1−𝒑𝑨(𝑎𝑖𝑗)
+ 𝒑𝑨(𝑎𝑘𝑙) ×

𝒑𝑩(𝑏𝑖𝑗)

1−𝒑𝑨(𝑎𝑘𝑙)
) , 𝑒𝑙𝑠𝑒

   (12) 

= {

0 , 𝑖𝑓 𝑖 = 𝑘 𝑎𝑛𝑑 𝑗 = 𝑙 

1

2
(𝒑𝑿(𝑥𝑖𝑗) ×

𝒑𝑿(𝑥𝑘𝑙)

1−𝒑𝑿(𝑥𝑖𝑗)
+ 𝒑𝑿(𝑥𝑘𝑙) ×

𝒑𝑿(𝑥𝑖𝑗)

1−𝒑𝑿(𝑥𝑘𝑙)
) , 𝑒𝑙𝑠𝑒

   (13) 

 

For a better visualization, We compute the probability mass 

functions of 𝑝𝑅 , 𝑝𝑀  and 𝑝𝑁  using the same training (gallery) 

feature templates as in [13] and such probabilities are shown in 

Figure 2.  

Next, we attempt to utilize these probabilities for computing 

the similarity function. Let 𝑈 be a random variable for the 22𝛽 

possible matching cases when templates 𝑨 and 𝑩 are unknown, 

and 𝑢𝑖𝑗𝑘𝑙  be the random values for 𝑈 , 𝑖, 𝑗, 𝑘, 𝑙 ∈ {0,1} . The 

probability mass function of the random variable 𝑈  can be 

computed from the average occurrences of each possible 

matching cases in the test samples. We attempted to split the 

computation of a similar score and a dissimilar score from 

respective clues in the probability mass functions, e.g. 𝑖 =
𝑘 & 𝑗 = 𝑙 as a group of 2𝛽 (i.e. 4) elements for similarity while 

the remaining 22𝛽 − 2𝛽 (i.e. 12) elements as another group for 

dissimilarity.  

For the group of similarity, it can be observed in the ideally 

matched situation that 𝒑𝑴(𝑚1111)  is much smaller than 

𝒑𝑴(𝑚0000), which implies that if the unknown templates are 

from the same class, 𝒑𝑼(𝑢1111) is expected to be smaller than 

𝒑𝑼(𝑢0000) . Therefore, instead of considering the absolute 

masses from 𝒑𝑼(𝑢0000), 𝒑𝑼(𝑢0101), 𝒑𝑼(𝑢1010) and 𝒑𝑼(𝑢1111) 

as the indication of similarity, it is reasonable to consider the 

relative masses with respect to 𝒑𝑴. The score for the group of 

similarity can be computed as follows: 

𝑠𝑠 =
1

2𝛽
∑ ∑

𝒑𝑼(𝑢𝑖𝑗𝑖𝑗)

𝒑𝑴(𝑚𝑖𝑗𝑖𝑗)

1
𝑗=0

1
𝑖=0                     (14) 

Similarly, the score for the group of dissimilarity can also be 

computed as the relative masses with respect to 𝒑𝑵: 

𝑠𝑑 =
1

22𝛽−2𝛽
∑ ∑ ∑ ∑

𝒑𝑼(𝑢𝑖𝑗𝑘𝑙)

𝒑𝑵(𝑛𝑖𝑗𝑘𝑙)

1
𝑙=0,𝑙≠𝑗 𝑖𝑓 𝑘=𝑖

1
𝑘=0

1
𝑗=0

1
𝑖=0     (15) 

While adopting the convention that a score with a smaller value 

means more similar, the final score can be computed as a 

weighted sum of these two scores: 

𝑠 = {
−𝑠𝑠 + 𝑠𝑑  , 𝑖𝑓 𝑤𝑠 = 0 𝑎𝑛𝑑 𝑤𝑑 = 0

−𝑤𝑠 ∙ 𝑠𝑠 + 𝑤𝑑 ∙ 𝑠𝑑  , 𝑒𝑙𝑠𝑒
           (16) 

where 𝑤𝑠  and 𝑤𝑑  are two scalars representing the weighting 

importance between the scores for the group of similarity 𝑠𝑠 and 

dissimilarity 𝑠𝑑. Intuitively, it is reasonable that the clues from 

the group of similarity, i.e. matching cases ‘0000’, ‘0101’, 

‘1010’, ‘1111’, weights more than the clues from the group of 

dissimilarity, i.e. remaining non-matching cases. We attempt to 

estimate such weighting from the variances of each group with 

the probability mass function 𝑝𝑅  when templates 𝑨 and 𝑩 are 

of random. It can be observed that the variance of 𝑝𝑅 from the 

group of similarity is larger than that of dissimilarity, which 

implies that the scores from the group of similarity is expected 

to have more dominant effect than the scores from the group of 

dissimilarity for the determination of whether a pair of 

templates is similar. In other words, the probability mass in the 

group of dissimilarity varies less significantly than the 

probability mass in the group of similarity. Therefore, we 

attempt to make use of those variances for estimating the 

respective weights: 

𝑤𝑠 =
1

2𝛽
∑ ∑ (𝒑𝑹(𝑟𝑖𝑗𝑖𝑗) − 𝒑𝑹̅̅̅̅ )21

𝑗=0
1
𝑖=0              (17) 

𝑤𝑑 =
1

22𝛽−2𝛽
∑ ∑ ∑ ∑ (𝒑𝑹(𝑟𝑖𝑗𝑘𝑙) − 𝒑𝑹̅̅̅̅ )21

𝑙=0,𝑙≠𝑗 𝑖𝑓 𝑘=𝑖
1
𝑘=0

1
𝑗=0

1
𝑖=0  (18) 

In summary, the final score can be represented as: 

𝑠 = ∑ ∑ ∑ ∑
𝒑𝑼(𝑢𝑖𝑗𝑘𝑙)

−2𝛽𝑤𝑠∙𝒑𝑴(𝑛𝑖𝑗𝑘𝑙)+(22𝛽−2𝛽)𝑤𝑑∙𝒑𝑵(𝑛𝑖𝑗𝑘𝑙)
1
𝑙=0

1
𝑘=0

1
𝑗=0

1
𝑖=0   (19) 

If we implement the computations using equation (19), it is 

required to count the occurrence of all 22𝛽 possible matching 

cases, which is quite inefficient. Therefore, we further simplify 

the equation for more efficient computations. Let 𝑄  be the 

number of pixels in each template. Recall that the probability 

mass function of the random variable 𝑈  (the unknown 

situation), can be computed from the average occurrences of 

each possible matching cases in the test samples: 

𝒑𝑼(𝑢𝑖𝑗𝑘𝑙) = 𝑃(𝑈 = 𝑢𝑖𝑗𝑘𝑙)                             (20) 

=
1

𝑄
∑ 𝒉𝒊𝒋𝒌𝒍(𝑨𝑞 , 𝑩𝑞)𝑄

𝑞=1                  (21) 
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𝒉𝒊𝒋𝒌𝒍(𝑨𝑞 , 𝑩𝑞) = {
1 , 𝑖𝑓 (𝑨𝑞 = 𝑖𝑗) 𝑎𝑛𝑑 (𝑩𝑞 = 𝑘𝑙)

0 , 𝑒𝑙𝑠𝑒
   (22) 

Substituting equation (21) into (19), 
 𝑠 

=
1

𝑄
∑ ∑ ∑ ∑ ∑

𝒉𝒊𝒋𝒌𝒍(𝑨𝑞,𝑩𝑞)

−2𝛽𝑤𝑠∙𝒑𝑴(𝑛𝑖𝑗𝑘𝑙)+(22𝛽−2𝛽)𝑤𝑑∙𝒑𝑵(𝑛𝑖𝑗𝑘𝑙)
1
𝑙=0

1
𝑘=0

1
𝑗=0

1
𝑖=0

𝑄
𝑞=1   

 (23) 

For each pixel, there is exactly one case among the 22𝛽 possible 

matching cases, therefore this equation can be simplified as: 

𝑠 =
1

𝑄
∑

𝒉𝒊𝒋𝒌𝒍(𝑨𝑞,𝑩𝑞)

−2𝛽𝑤𝑠∙𝒑𝑴(𝑛𝑖𝑗𝑘𝑙)+(22𝛽−2𝛽)𝑤𝑑∙𝒑𝑵(𝑛𝑖𝑗𝑘𝑙)

𝑄
𝑞=1          (24) 

where 𝑖𝑗 = 𝑨𝑞, 𝑘𝑙 = 𝑩𝑞 . 

𝑠 =
1

𝑄
∑ 𝒉𝒊𝒋𝒌𝒍(𝑨𝑞 , 𝑩𝑞)𝑄

𝑞=1 ∙ 𝒗                   (25) 

𝒗 =
1

−2𝛽𝑤𝑠∙𝒑𝑴(𝑛𝑖𝑗𝑘𝑙)+(22𝛽−2𝛽)𝑤𝑑∙𝒑𝑵(𝑛𝑖𝑗𝑘𝑙)
            (26) 

Note that 𝒗 is a vector of length 22𝛽, which can offer the same 

computational complexity as both Hamming distance and the 

partial similarity approach. In our applications on 3D finger 

knuckle and 3D palmprint, the number of elements of the 

similar matrix is 256 for the feature templates of size four-bits 

per pixel. In order to accommodate pose variations in the ac-

quired images, best or the minimum of the match scores 

resulting from the rotational or translational shifting of the 

probe template can be employed and is also investigated in our 

experiments. 

B. Theoretical Performance Estimation 

In order to ascertain the reliability of performance 

evaluations, it is highly desirable to evaluate the performances 

on a large amount of dataset. However, large biometric datasets 

are not easily available, therefore it is interesting to estimate 

such recognition performances using a theoretical approach. 

Similar to earlier references [13, 37], we also develop a 

binomial/trinomial distribution model consisting of 𝑛 trails. For 

the analysis of this section, we select a feature representation of 

template size one-bit per pixel instead for simplicity, because a 

template size of two-bits per pixel will result in ten possible 

outcome scores which is over complicated. When comparing a 

pair of one-bit templates, Hamming distance will result in two 

possible outcomes (i.e. ‘0’ and ‘1’) while our approach will 

result in three possible outcomes, 𝛼1 ,  𝛼2 ,  𝛼3 . Therefore, a 

trinomial distribution model consisting of 𝑛 trails is derived to 

model the distribution of imposter and genuine matching 

scores. Let 𝑝1, 𝑝2 and 𝑝3 represent the probabilities of having 

the three possible outcome scores respectively; 𝑋1  be the 

random variable representing the number of times the first 

outcome 𝛼1 is observed over 𝑛 trails and 𝑥1 be the value for 𝑋1 

from each of such trials. 𝑋2 , 𝑥2  𝑋3  and 𝑥3  are also defined 

similarly corresponding to 𝛼2  and 𝛼3 . The probability 

distribution function corresponding to the trinomial random 

variables is: 

 𝑓𝑋1,𝑋2𝑋3
(𝑥1, 𝑥2, 𝑥3) 

= {

𝑛!

𝑥1!𝑥2!𝑥3!
𝑝1

𝑥1𝑝2
𝑥2  𝑝3

𝑥3  , if 𝑥1+ 𝑥2+ 𝑥3 = 𝑛

0 , 𝑒𝑙𝑠𝑒
     (27) 

Let 𝑌 be a random variable representing the matching score 

between two feature representations. 

𝑌 = 𝛼1𝑋1 + 𝛼2𝑋2 + 𝛼3𝑋3                       (28) 

Since the sum of 𝑥1, 𝑥2, 𝑥3 is 𝑛, the dependence of 𝑥1, 𝑥2, 𝑥3 

can be computed as: 

𝑥2 =
𝛼1𝑛−𝛼1𝑥3+𝛼2𝑥2+𝛼3𝑥3−𝑦

𝛼1
   , 𝑥3 ∈ [0, 𝑛]        (29) 

𝑥1 = 𝑛 − 𝑥2 − 𝑥3   , 𝑥3 ∈ [0, 𝑛]                (30) 

Incorporating equations (29)-(30), the probability distribution 

function for the distribution of scores is: 

𝑓𝑌(𝑦) =  {
∑ 𝑓𝑋1,𝑋2𝑋3

(𝑥1, 𝑥2, 𝑥3)𝑛
𝑥3=0   ,  if 𝑥1, 𝑥2 > 0

0 , 𝑒𝑙𝑠𝑒
    (31) 

with the variance as follows: 

  𝑉𝑎𝑟(𝑌) 

= ∑ 𝛼𝑖
2𝑉𝑎𝑟(𝑋𝑖)

3
𝑖=1 + ∑ ∑ 2𝛼𝑖𝛼𝑗𝐶𝑜𝑣(𝑋𝑖 , 𝑋𝑗)3

𝑗=𝑖+1
2
𝑖=1   (32) 

The number of trails n can be computed as follows:  

𝑛 = ⌈
𝑉𝑎𝑟(𝑌)

𝜎2 ⌉                                 (33) 

In order to obtain the empirical variances for modelling the 

trinomial distribution, we employ the feature templates of size 

one-bit per pixel from the finger vein database which the details 

will be presented in Section V.C. We first model the theoretical 

distribution of imposter and genuine matching scores to verify 

the correctness of our implementations. Such estimation is 

shown in Figure 3(a)/(b). Next, in order to fairly compare the 

theoretical performance between our approach and the 

   
             (a)                                                                           (b)                                                                         (c) 

Fig. 3. Theoretical Estimation: (a) Distribution of Imposter Scores; (b) Distribution of Genuine Scores; (c) ROC. 
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Hamming distance measure, we set a situation that simulate the 

number of trails 𝑛 as 1000, and a dataset of 10,000 subjects, 

each with 10 images, which result in 100,000 (10,000 × 10) 

genuine and 999,900,000 ( 10000 × 9999 × 10 ) imposter 

matching scores. The compensation parameter for aligning 

templates is disabled. The estimation of theoretical 

performance is shown in Figure 3(c). These theoretical 

estimations show a promising performance improvement when 

the densities of zero and one pixels in binary feature templates 

are unequal (e.g. 0.6419 to 0.3581). 

V. EXPERIMENTS AND RESULTS  

Our proposed approach outperforms the state-of-the-art 

methods significantly, which is demonstrated in a publicly 

available database of 3D finger knuckle. In addition, we also 

demonstrate the generalizability of our approach by evaluating 

on other publicly available biometric datasets of similar 

patterns including 3D palmprint and finger vein. This section 

presents those comparative experimental results using publicly 

available databases. In order to ascertain the effectiveness for 

the verification and identification problems, comprehensive 

experiments were performed and the experimental results are 

presented using the receiver operating characteristics (ROC) 

curve with equal error rates (EER), and cumulative match 

characteristics (CMC) curve. Moreover, in deployed biometric 

systems, probe samples can also be acquired from unregistered 

users and may be incorrectly identified as enrolled users, 

therefore such open-set identification is widely considered as 

the more challenging problem. That evaluation was also 

performed in this paper and the results are presented using False 

Negative Identification Rate (FNIR) versus False Positive 

Identification Rate (FPIR) curves. The experimental results 

presented in this paper are reproducible [33] and are the 

evidence to validate the effectiveness, scalability and 

generalizability of the proposed approach. The feature images 

from respective databases are shown in Figure 4. 

A. Validations using 3D Finger Knuckle Images  

The HKPolyU 3D finger knuckle images database [13] is 

currently the only publicly available dataset providing 3D 

finger knuckle images. This recently released database can be 

considered as a benchmark dataset for the evaluation of the 

performance of 3D finger knuckle recognition. This dataset 

provides 1410 forefinger images and 1410 middle finger 

images from 130 subjects, while 105 subjects contain two-

session images. Since this dataset is quite small, we acquired 

more images from another 98 subjects. The combined dataset 

contains 2508 forefinger images and 2508 middle finger images 

from 228 subjects, while 190 subjects contain two-session 

images. Six forefinger images and six middle finger images are 

available for each subject per session. For the evaluation in this 

paper, we employ the forefinger knuckle images from the 190 

subjects containing two-sessions images. A standard two-

session evaluation protocol, which uses the first session images 

for the training and the second session images for the testing is 

adopted. This protocol generates 215460 (190×189×6) 

imposter matching scores and 1140 (190×6) genuine matching 

scores. As for the open-set identification experiments, 152 

subjects (80%) are considered as enrolled users while the 

remaining 38 subjects (20%) are considered as unenrolled users. 

In order to validate the outperforming recognition 

performance from our proposed approach, we fairly compare 

our approach with the currently best performing state-of-the-art 

3D finger knuckle recognition approach, SGD [13] on this 

enlarged dataset. In addition, we also present comparative 

experimental results using other state-of-the-art methods which 

were originally designed for 3D palmprint recognition and can 

    

     

    

     

                        (a)                                                (b)                                               (c)                                             (d)                                          (e) 

Fig. 4. Sample Feature Images Employed for the Experiments: (a)/(b) Four-bits Feature Images from two different human subjects in the HKPolyU 3D 
Finger Knuckle Images Database; (c)/(d) Four-bits Feature Images from two different human subjects in the HKPolyU Contact-free 3D/2D Hand Images 

Database; (e) One-bit Feature Images from Two subjects in the HKPolyU Finger Image Database. 
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be applied on 3D finger knuckle recognition. These baseline 

methods includes collaborative representation based 

framework with L1-norm regularizations (CR_L1_DALM) [6], 

L2-norm regularizations (CR_L2) [6], Binary Shape [8] and 

Surface Code [7].  For CR_L1_DALM and CR_L2, we 

investigate the variations between the reported database 

employed in [6] and the database employed in this paper. The 

reported database contain square size images with 128 pixels, it 

is reasonable to resize and crop our images, without changing 

the aspect ratio, to be the same size as the images in the reported 

database, and employ the same parameters provided along with 

CR_L1_DALM and CR_L2, which is already optimized for 

their reported database. For Binary Shape, we have optimzed 

the parameters for the kernel sizes.  

Figure 5 shows the comparative experimental results using 

ROC curves, CMC curves and FNIR versus FPIR curves. It can 

be observed that our proposed approach significanly 

outperforms all state-of-the-art methods in all three verification, 

close-set identification and open-set identification scenarios.  

B. Validations using 3D Palmprint Images 

While the study of 3D finger knuckle recognition is a 

research frontier, there is only one database currently publicly 

available. In order to strengthen the experimental evidence of 

the proposed approach, demonstrate the effectiveness and 

generalizability of the proposed method on other similar 

biometric problems, we also evaluate our method on another 

contactless 3D biometric database with similar surface patterns. 

The HKPolyU Contact-free 3D/2D Hand Images Database 

Version 1.0 [7] contains two-sessions images from 177 subjects 

(each with five images per session). All images are used for the 

performance evaluation. We also adopt a standard two-session 

evaluation protocol, which uses the first session images for the 

training and the second session images for the testing, which 

generates 885 (177 × 5) genuine and 155760 (177 × 176 ×5) 

imposter matching scores. For the open-set identification 

experiments, 142 subjects (80%) are considered as enrolled 

users while the remaining 35 subjects (20%) are considered as 

unenrolled users.  

The selection of baseline methods for performance 

comparison is based on the strong evidence that those methods 

offer superior performance on this evaluated database [7] as 

well as the availability of implementation codes. We compare 

our method with a recently published method (SGD [13]), as 

well as methods developed by other researchers 

(CR_L1_DALM [6], CR_L2 [6], Binary Shape [8] and Surface 

Code [7]). We further improve the reported experimental results 

of the best performing method (SGD) in [13] by also 

considering the rotational shifting, denoted as “SGD 

(TPAMI20) with rotate” to ensure fairness in the comparisons.  

Figure 6 shows the comparative experimental results using 

ROC curves, CMC curves and FNIR versus FPIR curves. It can 

be observed that our proposed approach achieved the best 

performance among all the baseline methods in all three 

verification, close-set identification and open-set identification 

scenarios, which again validates the theoretical arguments 

presented in Section III and IV.  

C. Supportive Evidence using Finger Vein Images 

The key purpose of this section is to show that the proposed 

similarity function can be incorporated with other methods 

based on binary templates, which are often the most effective 

and popular choice for the deployment due to the compact size, 

faster matching and higher resistance to noise. The HKPolyU 

Finger Image Database Version 1.0 [38] contains 1260 finger 

vein images acquired from 105 subjects. Similar to previous 

experiments in the original reference and this paper, we also 

adopt a standard two-session evaluation protocol as. This 

evaluation protocol consider the first session images from 105 

subjects, each with six images as the training/gallery set, while 

the second session images as the testing set, resulted in 630 

( 105 × 6 ) genuine and 65520 ( 105 × 104 × 6 ) imposter 

matching scores. Since the image from this database is not 3D, 

our proposed feature representation using surface normal 

vectors is not applicable. Instead, we integrate our similarity 

model into the baseline method with the database, using Even 

Gabor with morphological operation [38] which can describe a 

finger vein patterns using one-bit per pixel. Since this baseline 

method employed Hamming distance as the similarity measure, 

it is judicious to incorporate the proposed similarity function 

and compare the performance with and without such 

incorporation, which shows the effectiveness against the widely 

employed Hamming distance measure.  

Figure 7 shows the comparative experimental results using 

ROC curves, CMC curves and FNIR versus FPIR curves. It can 

be observed that our proposed approach offers a noticeable 

performance improvement. Since the employed feature 

template is of size 1-bit per pixel, the advantage of our proposed 

similarity function is less obvious than applying on a feature 

template of larger size, e.g. four-bits per pixel as in the 3D 

finger knuckle and 3D palmprint recogntion experiements. 

   
                                         (a)                                                                                  (b)                                                                           (c) 

Fig. 5. Comparative Experimental Results on the HKPolyU 3D Finger Knuckle Dataset: (a) ROC; (b) CMC; (c) FNIR versus FPIR. 
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However, we show that without the need of parameter tuning, 

our proposed approach can automatically compute a better 

similarity function than the widely employed Hamming 

distance measure. 

VI. CONCLUSIONS AND FURTHER WORK 

This work introduces a new approach for accurately 

encoding the curvature features generated from the 3D finger 

knuckle surfaces and a method to automatically generate more 

effective similarity function based on the statistical distribution 

of the encoded feature space. The proposed feature 

representation utilizes an insight in 3D geometry that, for a pair 

of neighbouring surface normal vectors, the distance between 

their heads is shorter than the distance between their tails if the 

surface is concave. Therefore, we can distinguish whether a 

local shape is convex or concave along a specified direction and 

encode the curvature information as binary templates of 

preferable sizes for further comparisons. When encoding the 

curvature feature in four directions, there will be ±22.5 degrees 

of tolerance to rotation. This feature representation is also 

expected to be robust to translation as such variations do not 

alter the surface curvature. 

This paper also addresses another critical problem, i.e. what 

is the best similarity function for matching binary templates. 

When computing the similarity between a pair of binary 

templates, instead of employing the widely adopted Hamming 

distance approach which lies on an assumption that the binary 

encodings for a pixel are equally important, we compute a 

similarity function from the probability mass distributions of 

the encoded feature space (i.e. frequencies observed in each of 

the possible feature values). Our proposed approach is scalable 

to binary templates with different sizes. The effectiveness of 

our proposed approach is validated on a publicly available 

database of 3D finger knuckle. Our approach outperforms the 

state-of-the-art methods significantly. In addition, we also 

demonstrate the generalizability of our approach by evaluating 

on other publicly available biometric datasets of similar 

patterns, i.e. 3D palmprint and finger vein. Our approach is 

generalizable to different biometrics.  

While providing a scientific and theoretical approach for this 

emerging biometric problem, it is also interesting to investigate 

the popular deep learning approaches, which have been actively 

developed for many applications while convolutional neural 

network (CNN) based methods are one of the leading state-of-

the-art in computer vision related tasks such as object 

recognition [25], instance segmentation [26] as well as 

biometric recognition [19, 29-30]. However, such approaches 

require relatively a large amount of training data and hyper 

parameter tuning when comparing to the conventional 

mathematical approaches. Furthermore, such approaches are 

also susceptible to adversarial attacks [31-32]. In order to 

compare with such approaches on specific biometric problem, 

customized development is required. For example, the success 

of a recent iris recognition research [19] requires the 

considerations of biometric aspects including the use of binary 

templates and the bit-shifting strategy for matching the 

templates. In this paper, we focus on advancing the current 

state-of-the-art 3D finger knuckle method from a mathematical 

perspective. The development of integrating theoretical 

concepts into interpretable deep learning models for learning 

structural patterns and similarities will be a promising future 

work in this area. In addition, if a finger sample is significantly 

    
                                         (a)                                                                                   (b)                                                                              (c) 

Fig. 6. Comparative Experimental Results on the HKPolyU Contact-free 3D/2D Hand Images Dataset: (a) ROC; (b) CMC; (c) FNIR versus FPIR. 

   
                                        (a)                                                                                (b)                                                                              (c) 

Fig. 7. Comparative Experimental Results on the HKPolyU 3D Finger Image Database: (a) ROC; (b) CMC; (c) FNIR versus FPIR. 
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deformed, the proposed feature descriptor may suffer. Such 

significant deformations are not considered in this work as we 

reasonably assume that a user has interest in biometrics-based 

access while presenting his/her 3D finger. Further research 

work is required to address such problems with large scale 3D 

finger knuckle databases that includes images from 

significantly deformed fingers.  
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