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Abstract—Photometric stereo offers a single camera based 

approach to recover 3D information and has attracted wide range 

of applications in computer vision. Presence of non-Lambertian 

reflections in almost all the real-world objects limits the usage of 

the Lambertian model for surface normal vector estimation. 

Previous methods proposed to address such non-Lambertian 

phenomena employ an outlier rejection approach while more 

recent methods introduce BRDF models which can generate more 

accurate results. However, results with comparable accuracy can 

also be achieved by simply filtering the observed intensity values. 

This paper presents two novel outlier rejection techniques which 

attempt to identify the data which are more reliable and likely to 

be Lambertian. In the first technique, observed intensity values 

with less reliability are automatically eliminated. This reliability is 

determined by the responses from a newly introduced inter-

relationship function. In the second technique, those photometric 

ratio equations which are less likely to be Lambertian are 

identified by observing the residue of the equations. By eliminating 

the data which is unreliable and likely to be non-Lambertian, 

surface normal vectors are more accurately estimated. Our 

comparative and reproducible experimental results using both 

real and synthetic datasets illustrate superior performance over 

the state-of-the-art methods, which validates our theoretical 

arguments presented in this paper. 

 
Index Terms—Photometric stereo, surface normal, non-

Lambertian, general reflectance  

 

I. INTRODUCTION 

HOTOMETRIC stereo is a widely studied technique in 

computer vision for estimating surface normal vectors, 

which constitutes key sources of information for 3D 

reconstruction and analysis. Woodham [1] introduced the first 

classical photometric stereo method that acquired stereo images 

of a static surface under different illuminations. By assuming 

Lambertian surfaces, i.e. whose bidirectional reflectance 

distribution function (BRDF) [2] is independent of illumination 

directions, the products of light vectors and surface normal 

vectors are proportional to the observed intensity values for 

each pixel. Thus, the pixel-wise surface normal vectors can be 

estimated using a least square error approach. There are many 

extensions of this work for objects with non-Lambertian 

surfaces [4], uncalibrated light sources [15], images with 

environment lightings [16], cameras with non-linear responses 

[17], and images with subpixel resolution [18]. Some 
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researchers have also investigated photometric stereo 

approaches for the multi-view reconstruction [19], and dynamic 

objects [20].  

For real object surfaces encountered in real-world 

applications, the presence of non-Lambertian observations 

induce several challenges for accurate estimation of surface 

normal vectors. Such non-Lambertian phenomena can result 

from specular reflections, shadow pixels, varying BRDFs for 

different illumination directions, sensor noises, and inter 

surface reflections. Previous outlier rejection methods 

introduced in the literature [5, 6, 24-33] attempted to address 

such non-Lambertian phenomena by filtering specular and 

shadow pixels. However, from more recent evaluations on real 

object dataset (DiLiGenT) [3], it can be observed that the two 

evaluated methods using the outlier rejection approach [5, 6] do 

not produce superior results. It shows that previous methods 

using this approach fail to accurately identify the outliers, when 

their objectives focus on finding specular and shadow pixels. In 

addition, the limitation resulting from the varying BRDF for 

different illumination directions are yet to be addressed. Recent 

research efforts have attempted to address the non-Lambertian 

phenomena by developing BRDF models [4, 7-11, 34-38].  

The two evaluated methods using the BRDF modeling 

approach [10, 11] achieve the best performance for the non-

Lambertian photometric stereo evaluation. However, it is worth 

noting that by incorporating a simple filtering method (position 

threshold method) on the observed intensity values with the 

traditional least square error approach can also achieve 

comparable performance. There are two important insights 

from this finding. One is that the existing BRDF modeling 

methods do not compute BRDF accurately, which limits the 

accurate estimation of surface normal vectors. For example, the 

method [10] has reported the average BRDF fitting errors 

(RMSE× 10−4) range from 6.71 to 174.88 for variant levels of 
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TABLE I 
COMPARATIVE SUMMARY ON RECENT PS METHODS FOR REAL OBJECTS  

Approach Objective 
Average  

Angular Error  

Conventional  

Outlier Rejection [5] 

Remove specular and 

shadow pixels 
13.3 

BRDF Modeling [10] Compute the BRDFs 10.3 

This Paper 
Identify representative 

Lambertian data 
9.1 
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additive noise. This approach also fails when only a few 

samples are available, and is computationally expensive. 

Another insight is that by only rejecting the observed intensity 

values, surface normal vectors can be estimated quite 

accurately. Therefore, there is a strong motivation to revisit the 

effectiveness of outlier rejection approach for a more accurate 

non-Lambertian photometric stereo method.  

A. Related Work 

The first photometric stereo method [1] was introduced with 

the assumption of Lambertian reflections. However, non-

Lambertian phenomena exist in almost all imaging of real 

objects. Therefore, many studies have attempted to address the 

limitations caused by non-Lambertian phenomena. A stream of 

research suggested using an outlier rejection approach for 

removing specular and shadow pixels, which cause non-

Lambertian phenomena. Earlier work [24-26] attempted to 

select the most reliable intensity values from four light sources. 

With more light sources, reliable observations can be extracted 

in a more robust manner by employing various promising 

mathematical techniques [27-33] to detect and reject the 

outliers. More recent state-of-the-art methods [5, 6] assumed 

that the non-Lambertian phenomena are local and sparse. 

Observations are modeled using a sparse outlier matrix plus a 

low rank observation matrix. Reference [5] minimized the rank 

of the matrix while reference [6] enforced rank-3 by employing 

sparse Bayesian regression. The optimization approach allows 

searching for the optimal surface normal vectors. 

Another stream of research attempted to develop 

sophisticated BRDF models [34-38] for surface normal 

estimation. Reference [4] adopted the Ward model [47] to 

explicitly represent the BRDF. Other research utilized general 

properties of BRDF such as isotropy, reciprocity, and 

monotonicity [7-11]. A recent research [45] suggested to also 

model specular reflections in addition to diffuse reflections, 

while another work [46] suggested to transform the photometric 

stereo problem into eigen decomposition problem.  

Although there have been many promising efforts [4-11, 24-

33, 45-46], the comparative effectiveness on real objects 

remains unclear. Reference [3] developed a photometric stereo 

dataset (DiLiGenT) of real objects with ground truth surface 

normal vectors, which is publicly accessible. Comparative 

experimental results, based on the statistics of angular errors, of 

various state-of-the-art methods were presented. Some methods 

(e.g. [4-9]) only perform well on a part of materials. The two 

representative methods using outlier rejection approach [5, 6] 

did not produce compelling overall preperformance, while 

methods using the BRDF modelling approach [10, 11] achieved 

the best overall performance for the calibrated non-Lambertian 

photometric stereo evaluation. A recent method [46] also 

demonstrated comparable performance on the same dataset.  

It is worth noting that results with comparable accuracy can 

also be produced by incorporating a simple filtering method 

(position threshold method) on the observed intensity values 

[3]. The filtering method removes outlying values (i.e. specular 

and shadow pixels) by sorting the intensity values. The 

traditional least square error approximation produced 

comparable results with the currently best performing methods 

[10, 11, 46] when only the central 20% of the sorted intensities 

are used. This suggests that identifying outliers is a critical step 

for an accurate estimation of surface normal vectors.  

B. Our Work and Contributions 

Unlike the earlier methods to address only specific 

limitations (e.g. specular reflections, shadow pixels, varying 

BRDF for different illumination directions, sensor noises, inter 

surface reflections) from non-Lambertian surfaces, we are 

motivated to address most of these limitations at the same time, 

by identifying the data which are more likely to be influenced 

by such non-Lambertian phenomena. Following summarized 

the key contributions in this paper: 

1. A new inter-relationship function is developed to identify 

reliable pixel intensity values from the input data, which allows 

more accurate estimation of surface normal vectors. State-of-

the-art methods typically employ a ranking approach (position 

threshold method) with the objective of removing specular and 

shadow pixels, which is achieved by retaining the median range 

intensity values. Instead, the objective of the inter-relationship 

function is to remove unreliable values, which is achieved by 

computing the distances between intensity values. Estimation 

of surface normal vectors is more accurate when the less 

reliable observed intensity values are discarded. Systematic 

experiments are conducted on a real object dataset (DiLiGenT) 

[3]. The experimental results presented in section IV of this 

paper indicate superior performance and validates the 

effectiveness of the proposed function, i.e. the average angular 

error in degrees when using (a) all observations is 11.0; (b) the 

position threshold method, which is adopted in state-of-the-art 

methods, is 9.5; (c) our approach is 9.1. This function can also 

be employed in existing photometric stereo methods. 

2. A new truncated photometric stereo method is introduced 

for a more accurate estimation of surface normal vectors. The 

photometric equations are extended to photometric ratio 

equations by assuming constant BRDF values, which is similar 

to existing formulations. However, the existence of inconstant 

BRDF values often poses a major limitation for the photometric 

ratio approach. We attempt to address such limitation by 

removing the equations which are likely to be non-Lambertian. 

The photometric equations with large discrepancy in BRDF 

values generate inconsistent photometric ratio equations, which 

are detected by the residues and are removed. Remaining 

equations are solved by the least square error approximation for 

estimating surface normal vectors. Comparative experiments 

are performed using a recent real object dataset (DiLiGenT) [3]. 

Our reproducible [48] experimental results presented in section 

IV of this paper indicate superior performance and validates the 

effectiveness of our approach. The average angular error in 

degrees when using currently available best performing method 

is 10.3 while our approach can significantly reduce this to 9.1. 

In addition, experiments are also performed using synthetic 

images available from a public dataset (MERL BRDF) [22]. 

The experimental results also achieve superior performance and 

again validate the effectiveness of our approach, despite our 

focus being to address the non-Lambertian phenomena in real 
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situations. The average angular error in degrees when using 

current best performing method is 0.62 while using our 

approach is 0.59. Table I summarizes the major difference 

between our method and the state-of-the-art approaches. The 

average angular errors are computed from experimental results 

on DiLiGenT [3], which are detailed in section IV. The errors 

from the best performing method are also presented.  

Rest of the paper is organized as follows: Section II presents 

the analysis on observed intensity values and introduce the 

inter-relationship function. Section III presents the analysis on 

photometric ratio equations and suggests the truncated 

photometric ratio method. Section IV presents the systematic 

and comparative experimental results. Section V concludes the 

paper. 

II. ANALYSIS ON OBSERVED INTENSITY VALUES 

With the advancement of high speed and low-cost sensors, it 

is convenient to acquire many images for a more accurate 

estimation of surface normal vectors using photometric stereo 

methods. However, observed intensity values in some images 

can be unreliable and may not be useful for the accurate 

estimations of surface normal vectors. Therefore, by removing 

unreliable values, it is expected that estimation of surface 

normal vectors will be more accurate. In this section, we 

describe the existing filtering method for removing outlying 

values and introduce a new inter-relationship function for this 

problem.  

A. Filtering Observed Intensity Values 

It can be observed from the study in [3] that, when the 

position threshold method is incorporated with the traditional 

least square error approximation approach, it produces a much 

better result than using all the observed intensity values. With 

the usage of a tight threshold, the result is even comparable with 

the currently best performing state-of-the-art methods. This 

suggests that filtering observed intensity values is a critical step 

for a more accurate estimation of surface normal vectors when 

the Lambertian reflectance model is used. Sometimes, the 

intensity of a pixel is affected by strong specular reflections, or 

when the pixel is in a shadow region. Those situations strongly 

affect the observed intensity values, and therefore the 

photometric stereo equations using those intensities are 

unreliable. In general, there are also some other factors (e.g. 

different BRDF for various illumination directions/materials, 

sensor noises, inter surface reflections) which can adversely 

affect the observed intensity values, and result in inconsistent 

system of photometric stereo equations. Since not all observed 

intensity data are reliable, removing those data values can 

significantly reduce the number of unreliable samples, which 

can enable a more accurate estimation of surface normal 

vectors. The key problem therefore lies in how to determine the 

observed intensity values to be discarded or accepted.  

The position threshold method is described in [3] and is also 

widely adopted in recent research, including [10] and [11]. It is 

a simple and efficient method for identifying the potential 

outliers. The observed intensity values with relatively high 

intensities are considered as specular points while those with 

the relatively low intensities are considered as shadow points. 

Intensity values of different illuminations are sorted for each 

pixel. The highest and the lowest intensity values are 

considered as outliers and are discarded. Those remaining 

intensities in a specified median range are accepted. Although 

it is quite effective to remove the extreme observations using 

this simple approach, there are some drawbacks. The position 

threshold method only considers the rank and fails to utilize the 

information from the distribution of the intensity values. There 

is a possibility that using more advanced methods may achieve 

better performance. There is some work on this problem such 

as in [12]. However, those methods lack scientific justification 

and systematic evaluation on real world datasets with ground 

truth surface normal vectors such as DiLiGenT [3].  

B. Inter-Relationship Function  

The observed intensity values which do not closely follow 

the Lambertian reflectance model are expected to represent 

outlining values. For example, if an intensity value is associated 

with strong specular reflections, it is expected that the value is 

far from other values. Therefore, the set of intensity values 

which is close to each other is relatively more reliable than the 

set of intensity values which is far from other values. 

Furthermore, low intensity values are more likely affected by 

sensor noise, which causes the observed intensity values to be 

inaccurate. To evaluate the distance between the observed 

intensity values, we have adopted a geometric approach with 

the capability to emphasize the unreliability of the very low 

intensity values instead of an arithmetic approach. In order to 

handle the two possibilities that either intensity values in a pair 

is larger than the other, we incorporate an arithmetic mean so 

that either case returns the same response. With the above 

principles, we have introduced a function for determining the 

reliability of the intensity values. Let m be the number of 

available images, and 𝑥1, 𝑥2, ⋯ , 𝑥𝑚 be the set of stereo intensity 

values of a pixel. Any values 𝑥 equals to 0 or 1 are first filtered 

out. Let r be the number of remaining intensities, and 

𝑥1, 𝑥2, ⋯ , 𝑥𝑟  be the set of remaining intensities. An inter-

relationship Function (IRF) is defined as follows: 

𝒇(𝑖) =
1

2(𝑟−1)
∑ (

𝑥𝑖

𝑥𝑗

𝑟
𝑗=1,𝑗≠𝑖 +

𝑥𝑗

𝑥𝑖
)                  (1) 

where 𝑖 = 1,2, ⋯ , 𝑟.  

The IRF is a non-linear function which measures the inter-

relationship among the observed intensities. If an observation 

value is far from most of the other values, the IRF response of 

that observed intensity value will be high. Meanwhile, if an 

observed intensity value is very small, the responses will be 

higher than an observed intensity value which is very large. IRF 

responses of all values are then ranked. Intensity values with 

high IRF responses are considered to be unreliable. Those with 

low IRF responses are selected as the reliable observations. 

Splitting RGB channels can further enhance the selection 

accuracy. Let ( 𝑰𝑟 , 𝑰𝑔, 𝑰𝑏 ) be the set of intensities for RGB 

channels of a pixel. An inter-relationship function with splitting 

RGB channels is defined as follows: 

    𝒈(𝑖) =
1

6(𝑚−1)
∑ ∑ (

𝐼𝑐,𝑖

𝐼𝑐,𝑗
+

𝐼𝑐,𝑗

𝐼𝑐,𝑖
)𝑐=𝑟,𝑔,𝑏

𝑚
𝑗=1,𝑗≠𝑖             (2) 
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where 𝑖 = 1,2, ⋯ , 𝑚. 

The IRF responses are then again ranked. Intensity values 

with low IRF responses are selected as the reliable 

observations. Since equation (2) is more computationally 

expensive, we can simplify the equation so that the 

implementation can be much simpler and more efficient. IRF 

function can be approximated as follows: 

    �̃�(𝑖) = ∑ (𝐼𝑐,𝑖𝑰𝑐
∗̅̅ ̅̅ +

1

𝐼𝑐,𝑖
𝑰�̅�)𝑐=𝑟,𝑔,𝑏                    (3) 

where 𝑖 = 1,2, ⋯ , 𝑚, 𝒙∗ = [
1

𝑥1
,

1

𝑥2
, … ,

1

𝑥𝑚
], 𝒙 =

1

𝑚
∑ 𝑥𝑗

𝑚
𝑗=1  .  

Figure 1 illustrates the difference between the IRF method 

and the position threshold method. A set of stereo intensity 

values are selected from a generally darker pixel from the object 

‘Cat’ in DiLiGenT [3]. The red curve shows the IRF responses 

for the corresponding intensity values. The blue curve is a 

scaled rank of the intensity values, which represents the 

selection criteria for the position threshold method. The 

position threshold method chooses the data points of the median 

range which is the middle range of the y-axis (blue box). It can 

be observed that the intensity values around the minimum range 

of the IRF responses are assembled together. Those values are 

expected to be more reliable (brown box). We selected 20 data 

points using both methods and estimated the surface normal 

vector using the traditional least square error approximation. 

The estimated surface normal vectors are compared with the 

ground truth surface normal vector. The angular error obtained 

by using the position threshold method is 6.65 while that from 

the IRF method is 3.21.  Comprehensive experimental results 

are shown in Section IV. The usage of two thresholds (low and 

high) for the position threshold method may be able to generate 

the same range of selection criteria as the IRF method. However, 

the range of selected observations computed from IRF will be 

different for various combinations of the set of observed 

intensity values. Furthermore, it is more difficult to 

automatically determine two parameters.  

C. Parameter Selection 

For the inter-relationship function, the number of observed 

intensity values selected, referred to as p here, is the sole 

parameter. It must be greater than or equal to 3. For example, 

with 100 available stereo images, the parameter space of p will 

be from 3 to 100. From our experiments, p is generally in the 

range of 10% to 30% of the number of available stereo images 

for achieving optimal performance. It is shown in section IV 

that smaller p achieves higher efficiency. 

III. ANALYSIS ON PHOTOMETRIC RATIO EQUATIONS 

Traditional photometric stereo method can also produce a 

reasonably accurate estimation of surface normal vectors even 

though the observed intensity values are distorted by non-

Lambertian phenomena. This suggests that the major 

components of the observed intensity values are contributed 

from the Lambertian reflections (i.e. the dot products between 

the light vectors and the surface normal vectors). It is believed 

that there also exists some accurate data which coincide with 

the Lambertian reflectance model (equation (4)). Therefore, by 

removing equations which are likely to be non-Lambertian, it is 

expected that the estimation of surface normal vectors will be 

more accurate. In this section, we describe a technique for 

filtering photometric equations with the help of a system of 

photometric ratio equations. First, traditional system of 

photometric linear equations is expanded to a system of 

photometric ratio equations. Inconstant BRDF values is the 

major limitation of the photometric ratio approach. We attempt 

to address such limitation by removing the equations which are 

likely to be non-Lambertian using an iterative filtering 

approach. 

A. Traditional Photometric Equations 

The pixel intensities are observed during image acquisitions, 

while the light vectors are calibrated. The objective of the 

photometric stereo problem is to estimate surface normal 

vectors using the following system of linear equations. For each 

pixel, we can define 𝒊 = [𝑖1, 𝑖2 , … , 𝑖𝑚 ]
𝑇 be the intensity values 

corresponding to m different light sources; 𝒍 = [𝑙𝑥 , 𝑙𝑦 , 𝑙𝑧 ]
𝑇 be 

the unit vector of a light source; 𝑳 = [𝒍𝟏 , 𝒍𝟐 , … , 𝒍𝒎 ]
𝑇  be the 

matrix of the light sources; 𝒏 = [𝑛𝑥 , 𝑛𝑦 , 𝑛𝑧 ]
𝑇  be the unit 

normal vector and ρ be the BRDF. A system of linear equations 

is formulated as follows: 

𝒊 = 𝑳 ∙ 𝒏 ∙ 𝜌(𝒏, 𝑳)                             (4) 

This system of linear equation can be solved by least square 

error approximation. In the following, we first present the 

system of photometric ratio equations with an incorrect 

assumption. Then, a truncated photometric stereo approach is 

introduced for removing the equations which are likely to be 

non-Lambertian by handling the incorrect assumption. 

B. Formulation using Photometric Ratio Equations 

Photometric ratio is a concept for considering photometric 

invariants, which is discussed by many references [12-14, 40-

44]. There are different variations of the photometric ratio 

equations formulation. Here, we briefly describe our 
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formulation which allows simple computation for surface 

normal vectors. When a pair of stereo values (e.g. 2 images) are 

available, a pair of equations can be rewritten as follows: 

𝑖𝑎 =  𝜌𝑎 ∙ (𝒍𝑎𝒏)                               (5) 

𝑖𝑏 =  𝜌𝑏 ∙ (𝒍𝑏𝒏)                               (6) 

First, assume 𝜌
𝑎
=𝜌

𝑏
 for the initialization. Theoretically, these 

two BRDFs are different. However, there is no perfect way to 

accurately compute the BRDF. Inaccurate estimation of BRDF 

also induce errors in the system for the estimation problem. 

Therefore, we suggest incorporating this assumption to 

minimize the errors induced. Evaluation results in Section IV 

also justified our arguments. Using equation (5) and (6), we can 

jointly obtain: 
𝑖𝑎

𝑖𝑏
=  

(𝒍𝑎𝒏)

(𝒍𝑏𝒏)
                                    (7) 

The BRDF values can be eliminated and Equation (7) can be 

rewritten as follows: 

     𝑖𝑎𝒍𝑏𝒏 =  𝑖𝑏𝒍𝑎𝒏                              (8) 

   (𝑖𝑎𝒍𝑏 − 𝑖𝑏𝒍𝑎)𝒏 =  0                                     (9) 

We also have the constraints that 

    𝑛𝑥
2 +  𝑛𝑦

2 + 𝑛𝑧
2 = 1   𝑎𝑛𝑑   𝑛𝑧 > 0             (10) 

Equation (9) can be rewritten as 

   (𝑖𝑎𝒍𝑏 − 𝑖𝑏𝒍𝑎)�̃� =  0                          (11) 

where    �̃� = [
𝑛𝑥

𝑛𝑧
 ,

𝑛𝑦

𝑛𝑧
 , 1]𝑇. 

With all the possible combinations of the observations, we can 

formulate a system of linear equations: 

𝑨𝒙 =  𝒃                                   (12) 

where 

   𝑨 = [
𝑖𝑎𝑙𝑥𝑏 − 𝑖𝑏𝑙𝑥𝑎 𝑖𝑎𝑙𝑦𝑏 − 𝑖𝑏𝑙𝑦𝑎

⋮ ⋮
]     ,   𝒙 = [

𝑛𝑥

𝑛𝑧
𝑛𝑦

𝑛𝑧

]    ,      

𝒃 = [
−(𝑖𝑎𝑙𝑧𝑏 − 𝑖𝑏𝑙𝑧𝑎)

⋮
]                        (13)  

  The above equations (11) - (13) may become unstable when 

𝑛𝑧  approaches zero. Since this situation mainly exists in the 

boundary cases, the proportion of such pixels are small and can 

be negligible. The traditional system of m linear equations is 

expanded to a system of 𝐶2
𝑚 photometric ratio equations. This 

system is equivalent to the traditional system only if the all the 

observed data follows Lambertian model. Since real 

observations are usually associated with different BRDFs, 

observed intensity values associated with more similar BRDFs 

produce more accurate photometric ratio equations. It is shown 

in section IV that using this system slightly outperforms using 

the traditional system. However, the incorrect assumption 

𝜌
𝑎

= 𝜌
𝑏
  for the initialization limits the enhancement on the 

performance. In the next sub-section, we introduce a truncated 

photometric ratio approach to address such problem. 

C. Truncated Photometric Ratio Approach 

The photometric ratio approach has been briefly introduced 

in the previous subsection. However, inconstant BRDF values 

is the major limitation of such photometric ratio approach. 

Some researchers recommend to solve the homogeneous 

system from equation (9) by SVD [13]. Others suggest using a 

variational approach to address this problem [14]. Those 

methods have not been systematically evaluated with publicly 

available datasets of real objects with ground truth. Since we 

have assumed 𝜌
𝑎
=𝜌

𝑏
during the initialization of the system of 

photometric ratio equations, some equations can be inaccurate 

and hinder the accurate estimation of surface normal vectors. 

We attempt to address this limitation by using an iterative 

filtering approach to remove the equations which are likely to 

be non-Lambertian. In the best of our knowledge, there has been 

no work to incorporate the effectiveness of using an iterative 

filtering approach to solve the system of photometric ratio 

equations. 

This approach firstly estimates the surface normal vectors 

using the least square error approximation method, which is one 

of the most reliable method in the literature. However, the 

drawback of using such approach is that outliers significantly 

influence the estimated result. Therefore, we attempt to remove 

the outlying photometric ratio equations which is likely to be 

non-Lambertian. When substituting the estimated surface 

normal vectors into equation (11), residues can be computed as 

the absolute value of the left-hand side for each equation. If an 

equation is likely to be Lambertian, the residue should be 

caused by only the less accurate surface normal vector. 

However, if an equation is likely to be non-Lambertian, the 

residue may also be caused by other non-Lambertian factors. 

Therefore, it can be used as an indicator for whether the 

equation is likely to be Lambertian. Equations having high 

residue values are discarded from the system and a new surface 

normal vector is computed with the remaining equations. With 

the updated surface normal vector, the indication of residues 

will be more accurate. Therefore, iteratively inspecting the 

updated residues, instead of completing this process at once, 

can allow more accurate estimation of surface normal vectors. 

This approach significantly improves the accuracy of surface 

normal vectors estimation. Algorithm 1 summarizes the 

iterative filtering method.  

Algorithm 1: Surface normal estimation using iterative 

filtering approach 

Input:   n_in: initial surface normal vector; 

        r: number of equations to be removed; 

        i: number of iterations 

Output: n_out: enhanced surface normal vector 

 repeat 

1: compute residues by LHS of equation (11); 

2: sort the residues 

3: remove r equation(s) with largest residue; 

4: compute n_out with the new system using 

     Least square error estimation; 

until the iteration number is i.   
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D. Parameter Selection 

For the truncated photometric ratio method, there are two 

parameters: the number of equations to be removed in each 

round, defined as r; and the number of iterations, defined as i. 

We suggest setting r to be 1 for better accuracy. However, a 

larger value of r allows better efficiency. p observed intensity 

values produce 𝐶2
𝑝
 photometric ratio equations. The remaining 

number of equations for estimating a surface normal vector 

must be greater than or equal to 3. Therefore, if r is 1, the 

parameter space of i can be from 3 to 𝐶2
𝑝

. From our 

experiments, i is generally in the range of 30% to 50% of the 

value 𝐶2
𝑝

 for achieving optimal performance. It is shown in 

section IV that smaller i achieves higher efficiency.  

IV. EXPERIMENTS AND RESULTS 

In this section, the proposed approaches are systematically 

evaluated to ascertain the effectiveness of each individual 

method. The experiments are performed on both real and 

synthetic datasets. 

A. Evaluation with Real Objects 

Our proposed methods are evaluated using the latest 

benchmark dataset of real objects with ground truth surface 

normal vectors, DiLiGenT [3]. In terms of shapes, there are 

objects with a sphere and smooth surfaces. Some objects are 

with complicated geometry with local details and concave parts. 

In terms of BRDF, the objects include diffuse and specular 

materials with rough surfaces, strong and sparse specular 

spikes, and soft specular lobes. Some materials are also 

spatially varying, and with metallic paint. For each object, there 

are 96 intensity images with corresponding light vectors, a 

mask image with 15 to 57 thousand white pixels, and ground 

truth surface normal vectors for each pixel. The angular errors 

are computed as the arc cosine of the dot products between the 

estimated surface normal vectors and the ground truth surface 

normal vectors. Similar to as in the state-of-the-art methods [10, 

11, 45, 46], the evaluation criteria for each object is based on 

the mean angular errors (MAE) over all pixels.   

 

(i) Systematic evaluations  

Both the proposed IRF for filtering observed intensity values 

and the Truncated Photometric Ratio (TPR) approach are 

systematically evaluated. We have compared three observations 

selection methods for three different approaches, which results 

in nine sets of evaluation results. The three observations 

selection methods include using all observations, the position 

threshold and the IRF method. The three different approaches 

include the traditional system of linear equations, the 

photometric ratio equations, and the TPR approach. 

Table II-IV present the evaluation results with mean angular 

errors of using various approaches. The parameters (number of 

selected observations and the number of iterations) were 

optimized for each of the object and each method, i.e. the 

parameters are optimized for each entry in the tables for 

producing the best possible performance. Results with bold 

represents the best performing method for that object. Our 

proposed IRF method generally outperforms both the position 

threshold method and using all observed intensity values, for all 

three approaches. In order to further investigate the 

effectiveness of the IRF method over other possible 

observations selection methods, additional experiments were 

TABLE II 
MEAN ANGULAR ERRORS OF USING THE TRADITIONAL APPROACH WITH DILIGENT 

Methods \ Objects Ball Cat Pot1 Bear Pot2 Buddha Goblet Reading Cow Harvest Average 

All observations 4.096 8.413 8.894 8.389 14.650 14.921 18.500 19.803 25.600 30.625 15.389 

Position Threshold 1.723 6.609 7.265 6.287 10.434 10.669 12.154 13.663 12.588 21.327 10.272 

IRF (RGB) 1.494 6.387 7.076 5.945 9.189 11.171 11.030 13.729 11.540 22.692 10.025 

 

TABLE III 

MEAN ANGULAR ERRORS OF USING PHOTOMETRIC RATIO EQUATIONS ON DILIGENT 

Methods \ Objects Ball Cat Pot1 Bear Pot2 Buddha Goblet Reading Cow Harvest Average 

All observations 4.061 8.459 8.941 8.370 14.451 14.698 17.853 15.850 24.007 26.605 14.330 

Position Threshold 1.719 6.493 7.184 6.291 10.423 10.257 11.962 13.411 12.544 21.177 10.146 

IRF (RGB) 1.508 6.240 6.859 5.934 8.960 10.567 10.565 13.354 11.332 22.055 9.737 

 

TABLE IV 
MEAN ANGULAR ERRORS OF USING TPR APPROACH ON DILIGENT 

Methods \ Objects Ball Cat Pot1 Bear Pot2 Buddha Goblet Reading Cow Harvest Average 

All observations 2.801 6.256 6.629 5.107 10.101 10.439 11.814 13.546 17.347 26.094 11.014 

Position Threshold 1.502 5.995 6.764 5.040 9.871 9.048 11.488 11.929 12.544 21.144 9.533 

IRF (RGB) 1.500 5.738 6.237 4.969 8.642 8.858 9.996 11.436 11.332 21.902 9.061 

 

TABLE V 

MEAN ANGULAR ERRORS OF USING PHOTOMETRIC RATIO EQUATIONS ON DILIGENT (FIXED PARAMETERS) 

Methods \ Objects Ball Cat Pot1 Bear Pot2 Buddha Goblet Reading Cow Harvest Average 

IRF (RGB) 1.518 6.240 6.941 7.303 8.992 11.264 11.071 14.495 14.706 22.739 10.527 

IRF (Gray Scale) 1.549 6.715 7.103 7.475 9.556 12.815 11.680 16.909 14.918 22.495 11.122 

Position Threshold 1.744 6.513 7.206 10.079 10.720 10.378 12.077 15.040 15.105 21.840 11.070 

Darkest 8.406 10.694 12.049 11.430 12.477 20.588 18.708 22.281 18.074 31.334 16.604 

Brightest 8.529 8.601 11.096 20.126 18.721 13.769 23.244 35.226 36.278 38.612 21.420 

Nearest (RGB) 1.800 6.312 7.151 10.142 10.656 9.900 11.945 13.863 14.896 21.501 10.817 

Nearest (Gray Scale) 1.795 6.445 7.218 10.355 10.930 10.242 12.132 15.122 15.087 21.576 11.090 
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performed using photometric ratio equations with fixed 

parameters (p=20, i=1), which the results are presented in Table 

V. The IRF method can accept either color (RGB) pixels or gray 

scale pixels for the computation of the function response. 

‘Position Threshold’ method selects the middle range of the 

sorted intensity values; ‘Darkest’ method selects the lowest 

range of the sorted intensity values; ‘Brightest’ method selects 

the highest range of the sorted intensity values. ‘Nearest’ 

method computes the distances between observed intensity 

values. Each intensity value is compared with all other intensity 

values by computing the absolute difference. The mean of the 

differences is the function response and the intensity values 

with the lowest range of the function response are selected. This 

method can also accept either color (RGB) pixels or gray scale 

pixels for the computation of the function response. These 

comparative experimental results validate the theoretical 

arguments in Section II.B. Filtering observed intensity values 

using IRF (RGB) has been shown to be more robust than using 

other potential observations selection methods for the real 

objects. 

The photometric ratio equations approach has not been 

adopted as the state-of-the-art evaluation of this dataset. We 

have also evaluated the photometric ratio equations approach in 

this dataset to verify its effectiveness. It can be observed from 

the comparison between of the traditional approach (Table II) 

and the photometric ratio approach (Table III) that the 

photometric ratio approach generally outperforms the 

traditional approach.  

Using the photometric ratio equations approach itself does 

not enhance the performance significantly, since the BRDF of 

different illuminations are not equal. When comparing our 

proposed TPR approach (Table IV) with the basic photometric 

ratio approach (Table III), the performance of TPR approach 

has significantly improved. These results verify the improved 

effectiveness of the TPR approach for more accurate 

estimations of surface normal vectors.  

 

(ii) Evaluation on the effects of parameters 

The effects of two main parameters (the number of selected 

observations p; the number of iterations i) on the computational 

time and mean angular errors (using the object ‘Ball’) are 

evaluated. These experiments were performed on a machine 

with Intel Core i7-6700HQ (2.60GHz) and were implemented 

in MATLAB.  For the process of selecting observed intensity 

values, simple position threshold method requires 32 

microseconds per pixel while the IRF (RGB) method requires 

645 microseconds per pixel. For evaluation the TPR approach, 

IRF method is adopted for selecting the observed intensity 

values. For evaluating the effect of p, we set i to be 1. For 

evaluating the effect of i, we set p to be 20. We also set the 

number of equations to be removed in each iteration, r to be 1. 

Figure 2 (a)/(b) show the actual computation time per pixel 

while Figure 2 (c)/(d) show the mean angular errors. These 

results also indicate that the number of selected observations p 

has the time complexity of O(𝑝2) while the number of iterations 

i has the time complexity of O(i). Furthermore, the lowest mean 

angular errors can be obtained using about 20 selected 

observations with about 10 iterations. The time complexity of 

our method is larger than the classical method, because there 

are more equations when the photometric ratio approach is 

adopted. However, the usefulness of the TPR approach can be 

justified by the outperforming results, i.e. the accurate 

estimation of surface normal vectors. 

 

(iii) Comparison with state-of-the-art methods 

In this section, we present comparative experimental results 

obtained from our method and ten state-of-the-art methods [4-

TABLE VI 

COMPARISON OF MEAN ANGULAR ERRORS WITH THE STATE-OF-THE-ART RESULTS ON DILIGENT 

Methods \ Objects Ball Cat Pot1 Bear Pot2 Buddha Goblet Reading Cow Harvest Average 

LS 4.096 8.413 8.894 8.389 14.650 14.921 18.500 19.803 25.600 30.625 15.389 

ECCV12 [8] 13.576 12.338 10.369 19.444 9.841 18.369 17.796 17.170 7.617 19.304 14.582 

CVPR12 [6] 2.544 7.210 7.739 7.315 14.088 11.114 16.249 16.166 25.701 29.257 13.738 

ACCV10 [5] 2.061 6.726 7.177 6.496 13.123 10.908 15.700 15.394 25.888 30.001 13.348 

CVPR10 [9] 3.549 8.402 10.849 11.478 16.371 13.053 14.889 16.824 14.951 21.789 13.215 

CVPR08 [7] 2.706 6.529 7.235 5.964 11.032 12.539 13.925 14.175 21.481 30.504 12.609 

TPAMI10 [4] 3.211 8.216 8.534 6.620 7.898 14.846 14.222 19.067 9.548 27.839 12.000 

TIP15 [45] 2.730 6.660 6.890 5.120 9.800 12.290 11.710 14.560 17.200 25.250 11.220 

CVPR14 [11] 3.337 6.743 6.642 7.107 8.768 10.468 9.712 14.189 13.054 25.949 10.597 

TIP17 [46] 2.170 5.640 7.280 5.310 8.430 9.300 10.520 13.000 16.790 24.590 10.300 

TPAMI14 [10] 1.743 6.116 6.508 6.122 8.777 10.600 10.090 13.629 13.933 25.436 10.295 

Ours 1.500 5.738 6.237 4.969 8.642 8.858 9.996 11.436 11.332 21.902 9.061 

 

  
                             (a)                                                       (b) 

  
                             (c)                                                       (d) 

Fig. 2. Effect of the number of selected observations p and the number of 
iterations i on: (a)/(b) computational time; (c)/(d): mean angular errors 
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11, 45, 46]. Our evaluation results for the methods in [4-11] and 

[46] are as same as those reported in [3] and [46] respectively. 

Method [45] was evaluated by using the original 

implementation codes provided along with that paper. The 

respective parameters for all the evaluated methods in this paper 

have been provided in the original codes or have been stated in 

the respective papers. We present our best results with 

optimized parameters as described in Section IV. A. (i) to 

ensure fairness in the performance comparisons. Methods [10, 

11, 46] achieved the best performance on this dataset. Table VI 

present summaries of comparative experimental results using 

mean angular errors. Ours method outperforms the best three 

methods for seven out of ten objects. Our method also achieves 

the best performance for five out of ten objects for all evaluated 

methods, and similar performance to the best performing 

methods for the remaining objects. It can be observed that our 

method results in a significant improvement for the average 

mean angular errors. Besides numerical results, we also present 

samples of reconstructed images for visual analysis. Figure 3 

shows angular error images of the object ‘Cat’, ‘Bear’, 

‘Buddha’, ‘Reading’, ’Cow’, and ‘Harvest’. Since the 

implemented codes of [46] are not yet available, we have 

compared our results with the remaining two best performing 

method in general [10, 11]. Our proposed method is especially 

effective for the wrinkle regions (with ellipses). In summary, 

outperforming results presented in this section justify our 

theoretical arguments presented in section III and IV.   

B. Evaluation with Measured BRDF 

The truncated photometric ratio approach is evaluated using 

the synthetic images of a sphere generated from the MERL 

BRDF database [22]. Light vectors for generating the synthetic 

images should be chosen carefully, because they can 

significantly affect the experimental results. Reference [45] 

suggested that using uniformly distributed light directions 

covering the whole hemisphere achieves optimal performance. 

Therefore, we adopt the same 100 illumination vectors as in the 

references [45, 46] for rendering the synthetic images. This also 

allows fairness in comparison with the experimental results 

presented in [45, 46]. 100 synthetic images are generated for 

100 materials. Our method is compared with methods in 

references [10, 11, 45, 46]. Since the intensity images are 

synthetically generated, sensor noise, shadows, and unknown 

distortions such as inter-reflections do not exist. Unlike real 

images, deep dark pixels are relatively unreliable. Therefore, 

our proposed IRF method cannot be fairly compared for such 

synthetic imaging situation. For methods [10, 11] and our 

method, we have adopted a simple filtering method on observed 

intensity values, which select the non-zero darkest pixels. This 

is the best method to filter out specular reflections effectively. 

The model parameters of methods [10, 11] are the same as 

detailed in their paper, which has been optimized for the same 

dataset. The observations selection parameter is optimized 

individually for both methods and each material. For method 

[45], we have reproduced the results using the available 

implemented codes and parameters. For method [46], since the 

implemented codes are not yet available, the performance are 

simply compared using the average errors presented in their 

paper to ensure fairness in the comparison (Table VII). The 

mean angular errors between the estimated and ground truth 

surface normal vectors are compared for the 100 different 

materials. Figure 4 shows the evaluation results with mean 

angular errors. Since this dataset is synthetic, the effectiveness 

of the proposed method is limited by having no unknown 

distortions which exist in the real world. Despite such 

limitations, the proposed truncated photometric ratio approach 

still outperforms all state-of-the-arts methods.  

 
Fig. 4. Comparison of mean angular errors on MERL BRDF dataset 
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TABLE VII 
COMPARISON OF AVERAGE ANGULAR ERRORS WITH THE STATE-OF-THE-

ART RESULTS ON MERL BRDF DATASET 

Methods Average Angular Error 

CVPR14 [11] 1.6231 

TIP15 [45] 0.8065 

PAMI14 [10] 0.6835 

TIP17 [46] 0.6200 

Ours 0.5866 
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C. Qualitative Evaluation with Real Fingerprints 

This sub-section presents supportive experimental results via 

visual inspections. Fingerprints contains fine patterns of ridges 

and valleys and the surface properties of human skin are non-

Lambertian. Therefore, an accurate reconstruction of 3D 

fingerprints is a challenging task. Similar to as in [10] and [11], 

Objects \ Methods CVPR14 [2] TPAMI14 [1] Ours Scale 

Cat 

    
Bear 

    

Buddha 

    
Reading 

   
 

Cow 

    

Harvest 

    
Fig. 3. Images of angular errors for the best performing methods for the ten objects in DiLiGenT [3] 
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we also performed qualitative experiments on a real dataset 

without ground truth surface normal vectors to examine the 

effectiveness of our method. We have comparatively evaluated 

the TPR approach with both the traditional least square 

approach (LS), which is also adopted in a recent fingerprint 

research [23], [39] and CBR [11] on a fingerprint dataset [39]. 

Since there are only six intensity values for a pixel, the effect of 

filtering observed intensity values is not visible through visual 

analysis. Therefore, all observed intensity values are used. The 

estimated surface normal vectors are then integrated using the 

 Surface Gradient in Horizontal Direction Surface Gradient in Vertical Direction 3D image 3D image (top view) 

LS 

  
 

 

CBR [11] 

  

 

 

Ours 

  

 

 

(a) 

LS 

  
 

 

CBR [11] 

  

 

 

Ours 

  

 

 

(b) 

Fig. 5. Sample images of reconstructed surface gradient and 3D images on a 3D fingerprints dataset [39] (two samples) 
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algorithm in [21]. Since ground truth surface normal vectors are 

unavailable, we present the surface gradient images and 3D 

images for visual analysis. Figure 5 shows some images using 

three different methods (two samples). It can be observed that 

CBR (one BRDF modelling method) degrades the results with 

smaller number of intensity values. Our method illustrates 

outperforming results over the baseline by presenting more 

details (ridge patterns) in the reconstructed images.  

V. CONCLUSIONS AND FURTHER WORK 

Non-Lambertian phenomena during the photometric stereo 

based imaging of real objects can result from specular 

reflections, shadow pixels, varying BRDFs for different 

illumination directions, sensor noises, or even from inter 

surface reflections. Unlike the earlier methods that only address 

specific limitations from non-Lambertian surfaces, our work 

has been motivated to simultaneously account for such 

undesirable limitations, by identifying the data which are more 

likely to be influenced by such non-Lambertian phenomena. 

Firstly, the observed intensity values with less reliability are 

automatically eliminated. The reliability is determined by the 

responses from a newly introduced inter-relationship function 

in Section II of this paper. Secondly, those photometric ratio 

equations which are less likely to be Lambertian are identified. 

Whether the equations are likely to be Lambertian or not is 

decided by the residue of the equations. By eliminating non-

Lambertian data, surface normal vectors are more accurately 

estimated. Systematic experiments for both techniques (inter-

relationship function and truncated photometric ratio method) 

are performed on a publicly available dataset of real objects 

(DiLiGenT) [3] and synthetic images generated from a popular 

MERL BRDF database [22]. The reproducible [48] 

experimental results presented in Section IV validates our 

theoretical arguments for the effectiveness of the proposed 

methods. When the number of available images is small, using 

the photometric ratio equations approach can offer more robust 

and accurate results. The computational time is also short, 

which can offer an attractive alternative for real-world 

applications on mobile platforms. The approach presented in 

this paper can be further improved by adaptive selection of 

parameters, reduction in computational complexity and is part 

of further work in this area.  
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