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University of Oulu, P.O. Box 8000, FI-90014 University of Oulu, Finland

Abstract

Non-metallic inclusions form an essential parameter for assessing steel cleanliness. The chemical
composition of the inclusions and content found in the steel matrix can be detrimental to both the
steelmaking process and steel properties. Therefore, a characterisation technique that has features
such as an improved duration for sample preparation, a non-destructive and relatively fast result
analysis is of high interest to both researchers and steelmakers.

The main objective of this study is to use Raman spectroscopy as an analytical technique to
characterise synthetic non-metallic inclusions mostly associated with aluminium-killed calcium
treated steels. The work first examines the possibility of estimating individual phase content for
synthetic inclusion mixtures consisting of CA, C12A7, C3A, MgO.Al2O3 and CaS phases by
using Raman spectroscopy. Observations made from the Raman spectra measured provide
qualitative information for the specific phases present in the samples. The results from the study
using calibration models are satisfactory in quantifying the specific phase content present in the
sample mixtures based on the Raman spectral data.

Additionally, this study investigates the potential use of Raman spectroscopy as a
characterisation technique for inclusion evolution studies and to predict the liquidus region within
a CaO–Al2O3 binary system under steelmaking temperatures. This is done by using different
synthetic inclusion phases to generate the sample matrix that has varying phase content for
possible inclusion evolution routes. The experimental measurements performed with Raman
spectroscopy prove to have a relatively short duration for sample preparation, fast results, and the
synthetic inclusion phases can be distinguished based on their characteristic Raman bands
features. Consequently, this study shows that Raman spectroscopy can potentially be used as an
analytical technique for inclusion studies in steel samples since the steel matrix is Raman inactive.

Keywords: characterisation, non-metallic inclusion, Raman spectroscopy, steel





Gyakwaa, Francis, Raman-spektroskopian käyttäminen synteettisten ei-
metallisten sulkeumien karakterisointiin alumiinitiivistetyissä kalsiumkäsitellyissä
teräksissä. 
Oulun yliopiston tutkijakoulu; Oulun yliopisto, Teknillinen tiedekunta
Acta Univ. Oul. C 762, 2020
Oulun yliopisto, PL 8000, 90014 Oulun yliopisto

Tiivistelmä

Ei-metalliset sulkeumat ovat tärkeä teräksen puhtauden arviointikriteeri. Sulkeumien kemialli-
nen koostumus, koko ja muoto teräsmatriisissa voivat vaikuttaa haitallisesti teräksen valmistus-
prosessiin ja teräksen ominaisuuksiin. Karakterisointitekniikka, joka lyhentää näytteiden käsitte-
lyaikaa ja mahdollistaa ainetta rikkomattoman testauksen ja tulosten suhteellisen nopean analy-
soinnin, on erittäin kiinnostava sekä tutkijoille että teräsvalmistajille.

Tämän tutkimuksen päätavoitteena on käyttää Raman-spektroskopiaa analyysitekniikkana
synteettisten ei-metallisten sulkeumien karakterisoimiseksi alumiinitiivistetyissä ja kalsiumkäsi-
tellyissä teräksissä. Tutkimuksessa tutkitaan ensin mahdollisuutta määrittää yksittäisen faasin
kemiallinen koostumus synteettisissä inkluusioseoksissa, joissa on CA, C12A7, C3A ja MgO-
Al2O3, sekä CaS-faaseja käyttämällä Raman-spektroskopiaa. Mitatusta Raman-spektristä tehdyt
havainnot osoittavat, että näyteseosten koostumus on määritettävissä tutkituille näytteille. Kalib-
rointimalleja käyttämällä saadut tulokset osoittavat, että faasiosuuksien määrittäminen onnistuu
riittävällä tarkkuudella Raman-spektridatan avulla.

Lisäksi tutkimuksessa tutkitaan Raman-spektroskopian käyttöpotentiaalia karakterisointitek-
niikkana sulkeumien analysoinnissa ja likvidusalueen laajuuden ennakoinnissa binäärissä
CaO–Al2O3 systeemissä teräksenvalmistuslämpötiloissa. Tutkimuksessa on luotu erilaisia syn-
teettisiä monikomponenttisulkeumia käyttämällä näytematriisi, joka sisältää laajasti eri faasi-
koostumuksia, sulkeumien mahdollisten kehitysreittien tutkimiseksi. Raman-spektroskopiaa
hyödyntämällä tehdyissä testeissä on osoittautunut, että näytteiden valmistelu vaatii aiempaa
vähemmän aikaa, tulokset saadaan aiempaa nopeammin ja synteettisten sulkeumien koostumus
voidaan identifioida faaseille ominaisten Raman-sidosten perusteella. Tutkimus osoittaa siten,
että Raman-spektroskopiaa voidaan hyödyntää analyysitekniikkana teräsnäytteiden sulkeumatut-
kimuksissa, koska teräsmatriisi on passiivinen Raman-säteilylle.

Asiasanat: ei-metallinen sulkeuma, karakterisointi, Raman-spektroskopia, teräs
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Abbreviations and symbols 

CMOS Complementary Metal Oxide Semiconductor  

Otoc. Total oxygen content  

MAE Mean Absolute Error 

MLR Multiple Linear Regression 

PCA Principal Component Analysis 

PDA Pulse Discrimination Analysis 

PLS Partial Least Squares 

R2  Coefficient of determination 

RMSE Root Mean Standard Error 

RMSEC Root Mean Standard Error in Calibration 

RMSCV Root Mean Standard Error in Cross-Validation 

RMSEP Root Mean Square Error of Prediction 

RPD Ratio of Prediction to Deviation 

SD Standard Deviation 

Si Relative stabilities 

SPA Successive Projection Algorithm 

SPAD Single-Photon Avalanche Diode 

SNR Signal-to-Noise Ratio 

SNV Standard Normal Variate 

wt% Weight percent 

XRD X-ray diffraction 

XRF X-ray fluorescence 

 

Chemical elements and compounds 

Al Aluminium 

Ca Calcium 

Cu Copper 

O Oxygen 

Mg Magnesium 

Mn Manganese 

S Sulfur 

Si Silicon 

Ti Titanium 

Zr Zirconium 

Al2O3 Aluminium oxide 
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CaO Calcium oxide 

CaS Calcium sulphide 

MgO Magnesium oxide 

MA Magnesium aluminate spinel (MgO.Al2O3) 

CA Monocalcium aluminate (CaO∙Al2O3) 

CA2 Calcium di-aluminate 

CA6 calcium hexa-aluminate 

C3A Tricalcium aluminate, (3CaO∙Al2O3) 

C12A7 Mayenite or dodeca-calcium hepta-aluminate (12CaO.7Al2O3) 

 

Units 

cm-1 Reciprocal centimetres  
oC Degree Celsius 

mA Milliamperes 

nm Nanometre 

kHz Kilohertz 

kV Kilovolt 

kW Kilowatt 
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1 Introduction  

1.1 Steel cleanliness and assessment  

The end-users of steel products continue to demand high-quality steels from 

steelmaking industries. Therefore, steelmakers work towards steel cleanliness to 

meet this demand through the utilisation of controlled and improved production 

practices throughout the steelmaking process as a necessity for high-quality steel. 

Steel cleanliness also contributes to the competitiveness and sustainability of the 

steel industry. Generally, the level of steel cleanliness could briefly be explained as 

being the content of harmful elements, such as oxygen, carbon, sulphur and 

phosphorus (Kiessling, 1980; Holappa & Helle, 1995; Zhang & Thomas, 2003).  

Steel cleanliness could also be further described as being the content or nature 

of non-metallic inclusions found in the steel matrix. Depending on the type and 

content of non-metallic inclusions, it can be considered detrimental to the 

steelmaking process, the final steel product and quality. Examples of such 

inclusions are oxides, sulphides and nitrides. Deterioration of the surface quality of 

steel products and potential nozzle clogging during the steelmaking process are 

some of the demerits associated with non-metallic inclusions (Xu, Liu, He & Pang, 

2018; Zhang & Thomas, 2003).   

For high-performance steels, non-metallic inclusions could have an impact on 

the steel microstructure and structural properties in the final steel product. A non-

metallic inclusion originates from various sources that depend on physical and 

chemical interactions between the molten steel, refractories, slag or the gas phases, 

as well as those processes used for controlling the total oxygen content in the steel 

melt. To minimise the detrimental effect of inclusions and to enhance the quality of 

the final steel product, researchers and steelmakers continue to study the 

mechanisms for the formation of non-metallic inclusions, chemical interaction, and 

potential separation during the steelmaking process.  

Another essential aspect to consider for steel cleanliness is the use of 

characterisation techniques for assessing non-metallic inclusions. The assessment 

could provide detailed information such as composition, size, spatial distribution, 

and morphology of inclusions. In addition, the characterisation of inclusion 

presents an opportunity for the formation and evolution process for the inclusions 

to be analysed, and for appropriate measures to be adopted for controlling and 

monitoring purposes. Review literature conducted by Zhang and Thomas (2003) 
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provides a list of characterisation techniques, such as scanning electron microscopy 

(SEM), optical emission spectrometry with pulse discrimination analysis (OES-

PDA) and among others, detailing the merit and demerits for using these methods 

to evaluate steel cleanliness. 

The interest in having analytical or characterisation techniques that provide 

relatively fast, non-destructive, easy or a short duration of time for sample 

preparation to assess inclusions could potentially improve and help in controlling 

and for monitoring during the steelmaking process. Consequently, an analytical 

technique with such features could relatively assist for routine measurements, and 

possibly be used for in situ or online characterisation of non-metallic inclusions. 

One possibility is Raman spectroscopy, which is a well-known vibrational and 

versatile spectroscopic instrument with features such as the non-contact and 

relatively non-destructive technique used for studying the vibrational and rotational 

modes of excited molecules in a material.  

Raman active materials can be measured non-destructively, relatively fast, and 

with little or a short duration of time for sample preparation using Raman 

spectroscopy. Ferraro, Nakamoto and Brown (2003) suggest that when laser light 

interacts with molecular vibrations in Raman active material, a change is triggered 

in the energy from the scattered photons. The shift or change in energy resulting 

from the laser interaction with the material is a characteristic function of the 

vibrational modes of a molecule. The Raman spectrum obtained from the measured 

material or sample produces unique vibrational fingerprints for identifying the 

composition within the material or sample. 

The use of Raman spectroscopy as a characterisation technique continues to 

contribute significantly to steelmaking research, such as for slag characterisation 

and structural analysis. Furthermore, synthetic non-metallic inclusions, such as 

some oxide and sulphides phases, have shown to be Raman active while the steel 

matrix is regarded as not Raman active. Additionally, it has been demonstrated from 

the studies conducted by Li and Hihara (2017) that oxide inclusions such as CA 

and CA2 can be characterised in steel samples using Raman spectroscopy. 

Therefore, the use of Raman spectroscopy presents a potential tool that can be used 

for the identification and characterisation of a non-metallic inclusion and which 

meets the need for a more robust characterisation technique for inclusions studies.    
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1.2 Objectives and scope of the study  

The main objective of this doctoral thesis is to examine the application of Raman 

spectroscopy for the identification and characterisation of synthetic non-metallic 

inclusions mainly associated with aluminium-killed and calcium-treated steels. The 

study is classified into four main tasks: 

– The use of Raman spectroscopy to characterise the relatively low-melting 

calcium aluminate phase of C12A7 along with CA and C3A, and also to predict 

the liquidus region within a CaO–Al2O3 binary system. 

– The identification and characterisation of generally harmful synthetic non-

metallic inclusions of MA spinel or CaS combined with a calcium aluminate 

phase (CA, C12A7 and C3A) sample mixture using Raman spectroscopy. 

– The application of Raman spectroscopy combined with a multivariate 

technique to quantify a multiphase consisting of (CaO–Al2O3)–CaS–MA spinel 

synthetic inclusions.  

– To demonstrate the prospect of using Raman spectroscopy for future steel 

sample non-metallic inclusion studies. 

All the Papers I–V used for this study are presented with a schematic chart, as 

illustrated in Figure 1. A brief description of the focus and concept for each paper 

are shown below: 

Paper I: Studies the characterisation of the fully modified liquid calcium 

aluminate phase of C12A7 and its interaction with the closest phase of CA and C3A 

to estimate the liquidus region within a CaO–Al2O3 binary system using under 

steelmaking temperature Raman spectroscopy. 

Papers II and III: These studies examine how to distinguish the detrimental MA 

spinel from the calcium aluminate phases of CA, C12A7 and C3A with Raman 

spectroscopy. 

Paper IV: Synthetic duplex CaS-oxides are studied to demonstrate the 

possibility of using Raman spectroscopy to estimate the CaS content from binary 

samples, as presented in Figure 1. 

Paper V: This study illustrates the application of Raman spectroscopy to 

quantify a generally complex synthetic inclusion consisting of MA spinel-calcium 

aluminate (CA, C12A7 and C3A)–CaS.   
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Fig. 1. Synthetic non-metallic inclusion sample matrix for Papers I–V.    

The doctoral thesis first presents some literature research carried out concerning 

non-metallic inclusions and brief background information for Raman spectroscopy. 

The background literature research gives a general perspective for the studies that 

are related to a non-metallic inclusion, particularly for inclusions associated with 

Al-killed and calcium-treated steel. In addition, the background studies discuss the 

application and robustness of Raman spectroscopy as a characterisation technique. 

The experimental procedure for sample preparation and measurements are 

explained. As well as this, the results obtained based on the Raman spectral data 

are discussed. The conclusion and recommendation for future studies are finally 

presented.  
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2 Theoretical background 

2.1 Non-metallic inclusions  

In steelmaking processes, one of the initial potential detrimental parameters for the 

assessment of steel cleanliness is the level of the total oxygen content (Otoc) in the 

molten steel (Cho & Suito, 1994). Studies conducted by Göransson and Jänsson 

(2001) suggest that high Otoc is undesirable and therefore, should be controlled to a 

minimum level in the steel melt. An oxygen removal process called a deoxidation 

process is commonly used to lower the dissolved or active oxygen content in the 

molten steel before cooling down and solidification. The deoxidation process can 

be accomplished by introducing elements such as aluminium (Zhang & Chou, 2015) 

or by using the Zr-Ti based deoxidising agent Si (Wu et al., 2016) in the ladle during 

tapping where it reacts with the dissolved oxygen present in the molten steel 

(Taguchi et al., 2005).  

The most commonly used element as a deoxidiser in steel industries is 

aluminium (Al), because of its high deoxidation efficiency and potential cost factor 

(Fandrich, Lüngen, & Wuppermann, 2008). According to Fandrich et al. (2008), a 

deoxidation process using Al helps in the reduction of oxygen activity in the molten 

steel to form oxide inclusions.  

The effectiveness of the deoxidation process depends on how Al introduced 

into the molten steel during tapping is consumed. Based on studies conducted by 

Kawawa and Ohkubo (1968), Conejo and Hernández (2006), Holappa, (2014)  and 

He, Chen, Guo, Shen and Wang (2015) some suggested ways in which Al 

consumption occurs during deoxidation process include: 

– Aluminium reacting with the dissolved or active oxygen in the molten steel. 

– The dissolution of Al in the molten steel to generate a reaction product of Al2O3 

that could be floated up to the top slag and partially retained in the steel melt 

as a solid Al2O3 inclusion. 

– The oxidation of Al caused by air entrainment or absorbed top slag. 

The potential loss of aluminium resulting from oxygen picked up through air 

entrainment is considered negligible when the deoxidation process is managed and 

controlled well (Cho & Suito, 1994). The expectation for the deoxidation process 

is to have the reaction product (Al2O3) floated from the steel melt up to the slag. 

However, a significant drawback associated with the Al deoxidation process 

identified by Cicutti, Madías and González (1997) and Sakata (2006) includes the 
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potential interruption of the casting process as a result of a solid Al2O3 inclusion 

formed in the molten steel becoming attached to the inner wall of the immersion 

nozzle causing clogging. 

 Additionally, the presence of MgO in the molten steel can react with Al2O3 to 

form a MA spinel inclusion. Potential sources of Mg can be attributable to 

refractories such as a MgO refractory according to Brabie (1996) and Deng, Zhu, 

and Sichen (2016). Though the deoxidation process can be successful in 

suppressing the total oxygen content in the steel melt, Park and Todoroki (2010) 

and Poirier (2015) suggest that the presence of solid Al2O3 or the formation of 

MgO.Al2O3 inclusions in the steel matrix can affect steel cleanliness. 

2.1.1 Calcium treatment 

The detrimental Al2O3 inclusion obtained from the deoxidation process using Al 

can be transformed into other forms of oxide inclusions by a well-known process 

called calcium treatment, as reported by various researchers such as Abdelaziz, 

Megahed, El-Mahallawi and Ahmed (2009), Chen et al. (2015),  Lis (2009), and 

Pires and Garcia (2004). The modification of an Al2O3 inclusion through calcium 

treatment is done by adding alloying elements such as Calcium during secondary 

steelmaking. Lis (2009) suggests that an Al2O3 inclusion in molten steel can be 

modified successfully with a CaO range of between 25% to 60%. The calcium 

treatment process is usually used in aluminium-killed (Al-killed) steels during 

secondary steelmaking to transform the solid Al2O3 inclusion into calcium 

aluminate (CaO–Al2O3) phase inclusions that have low liquidus temperatures 

compared to the steel melt (Pires & Garcia, 2004; Abdelaziz, et al., 2009; Lis, 2009; 

Chen et al., 2015). 

Studies conducted by Abdelaziz et al. (2009) and Verma et al. (2012) show that 

modified calcium aluminate inclusions are globular-shaped, have a smaller cluster 

size and are less abrasive compared with solid Al2O3 or MA inclusions that have 

dendritic morphology at rolling temperatures. The calcium treatment process also 

ensures that cleaner steel products with relatively low oxide contents are produced. 

Furthermore, from an operational control point of view, an effective calcium 

treatment process modifies solid Al2O3 or MgO.Al2O3 spinel inclusions, thus 

reducing potential submerged entry nozzle (SEN) clogging during steel casting 

(Abdelaziz et al., 2009).  Ye, Jönsson and Lund (1996) indicate that the inclusion 

evolution sequence for Al-killed steel treated with calcium could follow a route 

such as Al2O3 → CA6 → CA2 → CA → (C12A7, C3A), where C12A7 and C3A 
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are considered lower melting phases at a steelmaking temperature. This pattern can 

depend on the elemental contents such as Ca, Al, O being present in the molten 

steel. 

2.1.2 Inclusion formation and evolution process 

Extensive studies have been conducted concerning the formation, evolution and 

modification mechanisms on inclusion systems such as CaO–Al2O3, MgO–CaO–

Al2O3 and MgO–CaO–Al2O3–CaS (Seo, Kim, Jo, Suk & Byun, 2010; Yang, Li, 

Wang, Li & Lin, 2011; Verma et al., 2012; Ono, Mikib, & Hasegawac, 2014; Zhao, 

Li, Bao & Yang, 2015; Gollapalli et al., 2018; Tabatabaei, Coley, Irons & Sun, 

2018). The implementation of these findings concerning non-metallic inclusions 

can potentially be useful to steelmaking industries to optimise the process and work 

towards achieving improved and high-quality steel products. Poirier (2015), and 

Yan et al. (2015), Park and Park (2016), Deng, Zhu and Sichen (2016), Miao, Haas, 

Sharma, Mu and Dogan (2018) have shown that interaction between molten steel 

and slag or the refractory can also influence an inclusion’s chemical compositions, 

morphologies, physicochemical properties and volume fractions in the steel melt 

or final steel product. 

Additionally, the presence of elements such as S, Mn, or Mg within the steel 

melt can influence the formation and modification mechanism for inclusions. 

During the calcium treatment process for Al-killed steels, the calcium addition 

needs to be in the correct range for successful modification into calcium aluminates. 

For example, excess Ca and the high content of elements such as sulphur (S) in the 

molten steel, or a drop in activity of Al2O3 below a critical level can lead to the 

formation of a CaS inclusion according to Pires and Garcia (2004). Holappa and 

Helle (1995) and Jing, Shu-Sen, and Zi-Jian (2013) have simplified the reaction for 

the formation of CaS, which can be expressed as 

 3〈Ca〉  ሺAl2O3ሻ௨௦ → 2〈Al〉  3ሺCaOሻ௨௦ (1) 
and 
 2〈Al〉  3〈S〉  3ሺCaOሻ௨௦ → ሺAl2O3ሻ  3ሺCaSሻ௨௦. (2) 

As well as this, adding too small an amount of Ca potentially results in the 

incomplete evolution of the solid Al2O3 inclusions, therefore transforming them 

into solid calcium-aluminate (CaO–Al2O3) phases such as CA2, CA6 (Sun, 

Waterfall, Strobl, Liao, Holdridge, 2017) and can cause clogging in casting. Jing et 
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al. (2013) have demonstrated that the route of modification and calcium content in 

the molten steel can affect the final inclusion composition.  

The evolution and formation of inclusions associated with Al-killed calcium-

treated steels can potentially take the following routes: 

– Alumina (Al2O3) → calcium–aluminates such as CA2, CA, C12A7 and C3A: 

This is a situation where the deoxidation process using Al, and calcium 

treatment process are relatively considered auspicious. This route generally 

contains full liquid inclusion of C12A7 or partial liquid inclusion mixtures of 

C12A7–CA or C12A7–C3A at the casting temperature as discussed in studies 

conducted by Choudhary and Ghosh (2008), and Jing et al., (2013). 

– Alumina (Al2O3) → spinel (MA) → multi-component of CaO–MgO–Al2O3: The 

potential formation of a MgO.Al2O3 spinel inclusion with other calcium-

aluminates phases in a CaO–MgO–Al2O3 ternary system can be generated 

during the deoxidation stages through to the Ca treatment in the molten steel 

(Seo et al., 2010; Yang et al., 2011; Verma et al., 2012; Jiang et al., 2013; Ono 

et al., 2014; Tabatabaei et al., 2018).   

–  Alumina (Al2O3) → calcium-aluminates (CaO–Al2O3) → multi-component of 

calcium aluminates and sulphides (such as CaS) → [CaO–Al2O3]–CaS: The 

formation of a multiphase system of CaO–Al2O3–CaS for Al-killed steel 

treated with calcium is generally associated with having excess Ca during the 

Calcium treatment process in the presence of higher S content in the steel melt 

(Nadif, Lehmann, Burty and Domgin, 2007 and Gollapalli et al., 2018).  

2.1.3 Classification of inclusions  

A non-metallic inclusion can be considered indigenous (endogenous) or exogenous 

based on its sources(Kiessling, 1978; Way, 2001; Zhang & Thomas, 2006; Sahai & 

Emi, 2007). The types of inclusions originate from the interaction that occurs 

between active or dissolved oxygen, deoxidants such as aluminium (Al), and the 

molten steel during the steelmaking process. Indigenous inclusions are formed 

within the liquid steel. Indigenous inclusions can further be subdivided into primary 

and secondary endogenous inclusions. Primary endogenous inclusions are 

generated at liquid steelmaking temperatures; an example is deoxidation products 

such as solid Al2O3 (Zhang & Thomas, 2006; Sahai & Emi, 2007). Secondary 

endogenous inclusions are attributable to the formation of inclusions during cooling 

and the solidification of steel melt (Zhang and Thomas, 2006), while exogenous 
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inclusions are formed mainly as a result of entrapped slag or refractory interactions 

with molten steel (Zhang and Thomas 2006).  

Based on Papers I–V included for this study, the routes suggested by Jing et al. 

(2013) and the classification carried out by Thunman and Sichen (2008), non-

metallic inclusions for Al-killed Ca treated steels can be grouped as follows:  

Group 1 - CaO–Al2O3  

This group of inclusions is formed within the CaO–Al2O3 binary system. Three 

different phases of calcium aluminate inclusions are analysed in this study. These 

are low liquidus temperature phases of 12CaO.7Al2O3 (C12A7), monocalcium 

aluminate, CaO∙Al2O3 (CA) and tricalcium aluminate, 3CaO∙Al2O3 (C3A).  

Group 2 - [CaO–Al2O3] + MA spinel    

This group presents a situation where CaO–Al2O3 inclusions [12CaO.7Al2O3 

(C12A7), CaO∙Al2O3 (CA) or 3CaO∙Al2O3 (C3A)] can envelop around 

magnesium–aluminate spinel (MA). Therefore, the presence of MA spinel 

surrounded by CaO–Al2O3 can be used to distinguish group 2 from group 1. 

Group 3 - (CaO–Al2O3) + CaS   

This inclusion group is based on a CaS shell enveloping around the CaO–Al2O3 

inclusions such as C12A7, C3A or CA (as in group 1). The existence of this group 

can be linked to introducing an excess calcium-containing element during the Ca 

treatment in the presence of higher S content in the steel melt.  

Group 4 - CaO–Al2O3 + spinel + CaS   

Inclusions for this group are derived from the group 3 inclusion with the additions 

of MA spinel to illustrate a situation where multi-component inclusions consisting 

of sulphides (CaS), Ca-aluminates and MA spinel can be formed. This can occur 

when the casting and inclusion modification processes are less effective relative to 

suppressing a potentially harmful element. 

The ideal sequence discussed and suggested by the researchers demonstrates 

that for Al-killed steel treated with calcium, the general goal is to generate a low 

melting calcium aluminate inclusion such as those in group 1. However, the 
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modification and formation mechanism can generate relatively detrimental 

multiphase inclusions during ladle operations or surface quality challenges that 

may fall out of expectations and can be associated with groups 2, 3 or 4. These 

multiphase inclusions can be traceable starting from the deoxidation process 

through to a Ca treatment for Al-killed steel with appreciable contents of Mg and S 

in the molten steel. Consequently, there is a need to embrace suitable 

characterisation techniques that assist in studying a relatively more uncomplicated 

inclusion system to a potentially complex inclusion system such as Al2O3 → 

MgO.Al2O3, (MA) → CaO∙Al2O3 (CA) → MgO.Al2O3–CaS–(CaO–Al2O3) 

2.2 Characterisation and assessment techniques  

The need for continuous improvement for steel cleanliness has encouraged the 

development of numerous analytical techniques for the characterisation of non-

metallic inclusions found in the steel matrix. Depending on the type or purpose of 

assessment, non-metallic inclusion characterisation techniques can be classified 

differently. Literature from Zhang and Thomas (2003) has provided a detailed list 

of analytical techniques classified as direct or indirect methods. The methods stated 

by Zhang and Thomas (2003) have all contributed and continue to play a significant 

role as metallurgical approaches for the study of inclusions in steel samples.  

However, the selection of suitable characterisation techniques for the 

identification and analysis of inclusions depends on the duration required for 

sample preparation, inclusion size, level of accuracy, and reliability of methods. 

Therefore, to meet steelmakers’ expectations, it will be more appropriate, if 

possible, to have an analytical technique (or techniques) that are relatively fast, 

involve less sample preparation, and produce accurate or reliable analysis results. 

This will play a vital role in estimating and will potentially be used to control 

inclusions in the molten steel before or during the casting process. Numerous 

applications of vibrational spectroscopy such as Raman spectroscopy have proved 

to be a versatile and robust instrument to present some of the features listed in this 

section.    

2.3 Brief background of Raman spectroscopy  

As an analytical technique, Raman spectroscopy is a type of vibrational 

spectroscopy that operates by using an inelastic light scattering effect for the 

excitation of vibrational modes of molecules in a material which can either be solid, 
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liquid or even gas ( Harris & Bertolucci, 1978; Nakamoto & Brown, 2003). The 

Raman effect predicted and briefly explained as the change in wavelength when 

light is passed through a material or a set of molecules in harmonic vibrations 

(Nakamoto & Brown, 2003), was experimentally demonstrated by Chandrasekhra 

Venkata Raman in 1928 (Raman & Krishnan, 1928) and named after him. This new 

optical scattering phenomenon discovery won the Nobel Prize in Physics in 1930 

in recognition of C.V. Raman’s contribution to spectroscopic studies. The use of 

Raman spectroscopic studies for materials was minimal because the Raman signals 

were very weak. However, technological advances in Raman spectroscopic 

instrumentation resulted in the use of lasers that give high irradiation when the laser 

beam is focused on the material, therefore improving the Raman signals (Das & 

Agrawal, 2011; Lipiäinen et al., 2018). 

According to Smith and Dent (2005), the general principle of Raman 

spectroscopic measurement also illustrates that Raman spectroscopy operates on 

the use of a laser source (monochromatic light) to generate intense electromagnetic 

radiation, and when focused on a material, it interacts with its components. This 

results in the scattering of the radiation in different wavelengths that create a 

characteristic spectral fingerprint of atomic vibrations. Generally, the change in 

vibrational frequency can be related to features such as the molecular group, the 

nature of bonds, and the chemical nature of the atoms that are found in the sample 

(Nakamoto & Brown, 2003). 

When the monochromatic light from the laser interacts with the molecules in 

the material, the incident photons or radiation are scattered as Raman scattering or 

Rayleigh scattering according to Smith and Dent (2005), and Nakamoto and Brown, 

(2003). Raman scattering is an inelastic scattering that occurs when the scattered 

photons have to change energy from the incident, or due to the absorption or 

excitation of a vibrational mode of the molecule in a material (Nakamoto & Brown, 

2003; Smith & Dent, 2005). The shift in energy attributable to the scattered photons 

for Raman scattering is referred to as the Raman shift. Rayleigh scattering takes 

place when there is no energy change between a scattered photon and the incident 

photons and with the scattering considered elastic (Nakamoto & Brown, 2003; 

Smith & Dent, 2005). 

Based on the excited states associated with the vibrational modes of the 

molecule in a sample (Smith & Dent, 2005), two types of Raman scattering can be 

established: 
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– Stokes scattering – Is a result of a molecule at the ground vibrational state 

which can absorb the energy from the incident photon and move to an excited 

or higher vibrational state. The loss of photon (energy loses) resulting from the 

difference between the ground state and the excited state is referred to as Stokes 

scattering. 

– Anti-Stokes scattering – Is a situation where a molecule already in an excited 

state absorbs the photon and returns to a ground state. The incident photon 

energy gained from the difference between the ground vibrational state and the 

excited state is defined as anti-Stokes scattering. 

Figure 2 is the Jablonski diagram that illustrates the interaction of incident 

photons with the molecules in a sample can be related to using energy-transfer 

mechanisms, as explained by Colthup, Daly and Wiberley (1990). Rayleigh (elastic 

scattering) occurs as a result of the transition starting within the same vibrational 

energy level and therefore there is no frequency change 𝑣 or loss of energy. For 

Raman scattering or inelastic scattering, waves with frequencies of 𝑣  𝑣 occur 

when scattered photons are increased in the frequency by 𝑣 and are considered 

anti-Stokes Raman scattering (Das & Agrawal, 2011). In addition, Stokes Raman 

scattering relates to a situation when there is a decrease in frequency 𝑣 െ 𝑣  
attributed to the scattered photon. According to Smith and Dent (2005), Raman 

scattering intensity can be expressed as 

 𝐼 ൌ 𝐾𝐼𝑎ଶ ∗ ሺ𝑣 േ 𝑣ሻସ, (3) 
where K denotes a series of constants, 𝑎 is polarizability constant and 𝐼 represents 
the intensity of the incident radiation. 

Additionally, Boltzmann’s equation shows that the relationship and ratio 

between the Stokes Raman and anti-Stokes Raman scattered photons can be 

associated with a vibrational ground and an excited states population and is 

expressed as (McCreery, 2001)   

 
ூೄೝೖೞ

ூೌషೄೖೞ
 ൌ  ቀ

௩బି௩
௩బା௩

ቁ
ସ 

ೡ
಼ಳ, (4) 

where, KB represents the Boltzman constant, h is Planck’s constant and T is the 

absolute temperature. 
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Fig. 2. Energy level diagram showing Rayleigh (elastic) and Raman or inelastic 

scattering. 𝒗𝟎 is the frequency of the radiation source, and 𝒗𝒊 is the molecular vibration 

for the sample analysed (Redrawn from Smith and Dent, 2005).  

Stokes scattering is more preferred and is used for Raman spectroscopic 

measurements compared to anti-Stokes scattering at room temperature. This is 

because at an ambient temperature, most of the molecules in a material exist in the 

ground state. Therefore, as a result of an incident photon, Raman scattering is 

dominated by Stokes Raman scattering (Smith & Dent, 2005). Stokes scattering 

generally has more molecules in the ground vibrational state relative to the 

molecules found in excited states of a material (Smith & Dent, 2005). However, the 

potential challenge associated with Raman scattering is that a small fraction of the 

scattered photons is Raman scattered (Smith & Dent, 2005).  

According to Chase (1994), this can be mitigated with the use of highly 

efficient laser sources to excite the molecule in the material measured, and the 

Rayleigh scattering can be suppressed by using a filter. The Raman spectrum 

acquired from a sample is a graphical representation of the measurement results 

from the sample, with the intensity of the scattered light plotted on the y-axis 

against the frequency of light on the x-axis as shown in Figure 3. The Raman shift 

is equivalent to the energy from the vibrational states of the molecule. The 

frequency plot on the x-axis is measured with a unit referred to as a wavenumber 

and is denoted as reciprocal centimetres (cm-1). For a sample measured with Raman 

spectroscopy, Figure 3 further illustrates a schematic diagram labelled as (i – iii) 
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that shows the relevant information that can be acquired from a Raman spectrum 

which includes: 

i. The intensity (I) shows the specific component concentration in the sample 

measured.  

ii. Raman band (shift) position is used to illustrate the measured sample phase, 

structure or stoichiometric content.  

iii. The full width at half maximum (FWHM) shows the crystallinity, the 

defects or doping of the sample measured and the Raman band (shift) 

direction could be attributable to the effect of stress, pressure, or 

temperature. 

 

Fig. 3. A schematic diagram of a Raman spectrum and corresponding measurement 

data information.  

2.3.1 Applications of Raman spectroscopy 

From literature, Raman spectroscopy has shown its vital role to research 

developments and applications as an analytical technique. The use of Raman 

spectroscopy had been reported in fields of research such as in pharmaceuticals 

(Vankeirsbilck et al., 2002) and material science (Tian et al., 2006). Additionally, 

as a characterisation technique, Raman spectroscopy has been used to study some 
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inclusions (Hirlimann, Jouanne, & Forriès, 1992; Cooper, Elliott & Young, 2003; 

Li & Hihara, 2017) and metallurgical slag structural analysis (Park, 2013). Below 

are some advantages associated with the use of Raman spectroscopy for materials 

analysis:   

– It is generally considered a relatively non-destructive characterisation 

technique; however, for heat-sensitive samples, the laser irradiation can 

potentially react with the sample. The use of relatively low laser power can be 

used to minimise the destructive effect on the sample.   

– There is relatively less duration or an easy sample preparation process, and a 

Raman spectrum can be obtained from material non-invasively.  

– The instrument is quite easy to operate, and usually each measurement can be 

carried out in just a few seconds or minutes. 

– Additionally, Raman spectroscopy is considered a promising tool for the study 

of materials since specific components in a material can be identified based on 

the Raman spectrum that serves as a characteristic fingerprint or signature of 

the components measured in the material. As well as this, it can be used for 

both qualitative and quantitative analysis (Dandeu et al., 2006; Muñoz Tabares 

& Anglada, 2010).  

2.3.2 Limitations of Raman spectroscopy  

The use of any analytical instrument will generally have some demerits; similarly, 

Raman spectroscopy has some limitations that should be considered when 

conducting sample measurement. Some examples of the limitations associated with 

Raman spectroscopy include: 

– Fluorescence effect: A potential challenge with the use of Raman 

spectroscopy to conduct measurements depends on the level of 

fluorescence interference with the Raman bands (Vankeirsbilck et al., 

2002). Studies conducted by Lipiäinen et al. (2018) have demonstrated that 

a recent technological development can be used to suppress the 

fluorescence interference by ensuring that the Raman signals are obtained 

quickly relative to the fluorescence effect by using time-gated techniques. 

– Excitation intensities effect: Very high excitation intensities (laser power) 

can thermally decompose the sample, especially heat-sensitive materials. 
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2.3.3 Raman spectroscopy instrumentation 

The main components for a Raman spectroscopy typically include an excitation 

source, a rejection filter, a diffraction grating, a detector and a source of recording 

the Raman spectrum, as illustrated with a schematic diagram in Figure 4. The 

excitation source consists of a laser source; the selection of a laser source may 

depend on the spot size required and wavelength. The laser source illuminates the 

samples via fibre optic cables or lens, and the Raman scattered light is collected 

with optical fibre. The scattered light is filtered using a rejection filter that is used 

to block the Rayleigh source from the sample excited with the laser source (Chase, 

1994). The detector is used to analyse the emitted Raman scattered light. Finally, a 

spectral analysis system is used to analyse the collected Raman spectra. 

 

Fig. 4. Simplified schematic diagram of Raman spectrometer instrumentation.  
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2.4 Calibration model identification and multivariate analysis 

According to Cooper (1999) and Harrell (2001), a calibration model and 

multivariate analysis are widely used for characterising materials measured with 

Raman spectroscopy. In using a calibration model, the relationship between 

different Raman bands (peaks) ratios and the sample weight percentage or phase 

content can be established and analysed. For analysing the phase content of the 

binary sample, the use of linear regression constructed between the relative Raman 

intensity of the peak ratios and the phase content in the sample can be carried out. 

However, as the individual components or phases in a sample increase (more than 

two components), potential overlapping of Raman peaks or variable collinearity in 

the Raman spectra data can cause the inaccurate estimation of the specific 

components in the samples. Consequently, detailed mathematical models are 

required to process and enhance the quantitative estimation for the individual 

constituents from the Raman spectra data treatment.  

2.4.1 Model selection  

The relationship between a specific component in a sample and the measured 

Raman data for binary samples can be established using a calibration model. The 

calibration model can further be used for estimating the variation in the component 

content in the samples by considering the relative intensities for the Raman peaks 

associated with the phases found in the Raman spectrum. According to Harrell 

(2001), the calibration model feature candidate can be expressed as 

 𝑥 ൌ  
ூೖ

ሺூାூೖሻ
, (5) 

where xc is used to denote the model calibration feature candidate, In represents the 

intensity that relates to the Raman shift n, and Ik represents the intensity for the 

Raman shift at k.  

Prior to the analysis, the raw Raman spectra data obtained from the Raman 

spectroscopy measurement are subjected to normalisation. A linear regression 

calibration model can be constructed between normalised relative intensities of the 

Raman peaks obtained from the total summed Raman spectra and the phase 

contents in the sample. Harrell (2001) suggest that the error function associated 

with the calibration parameter can be expressed as 

 min∑ ൫𝑦,௧. െ 𝑦ො,௧.൯
ଶ

 ൌ min∑ ൬𝑦,௧. െ 𝑏ଵ
ூೖ,.

ሺூ,.ାூೖ,.ሻ
 𝑏൨൰

ଶ

ୀଵ


ୀଵ . (6) 
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In addition, with Moore-Penrose inversion, according to Harrell (2001), the least-

squares solution of the error function can be expressed as  

 𝑏^ ൌ ሺXXሻିଵXy, (7) 

where the estimated parameter b0 is the intercept, b1 is the slope, b^ denotes the least 

squares estimate, X is the data design matrix, t represents the training subset and y 

is the response vector or dependent variable. 

Baumann (2003) as well as Baumann and Stiefl (2004), have shown that a 

leave-multiple-out cross-validation procedure can be used to evaluate the model 

performance for each of the calibration variables for a calibration model. 

Additionally, the use of a leave-multiple-out cross-validation can be used to obtain 

a very stable model (Baumann & Stiefl, 2004). The data used for the analysis can 

also further be split to approximately 20% for validation and 80% used for training 

in the cross-validation process. 

The assessment for the model distribution and performance of the calibration 

parameters can be done by carrying out for about the cross-validation 4N times. 

The final calibration model selections are presented in equations 8 and 9, where k 

is the number of data points in the validation set, N is the number of data points in 

the training set, and with l as the split repetition. 

The assessment for the model distribution and performance of the calibration 

parameters can be done by carrying out for about the cross-validation 4N times. The 

final calibration model (Cfinal) selection is presented by  

 𝐶 ൌ min
 

ଵ

ସே
∑ MAE,௧ MAE,௩
ସே
ୀଵ , (8) 

where  

 MAE ൌ
ଵ


∑ ห𝑦,௧ െ 𝑦ො,௧ห

ୀଵ , (9) 

k is the number of data points in the validation set, N is the number of data points in the 

training set, and with l as the split repetition.  

Baumann et al. (2004) demonstrate that the stability of the calibration model can 

be estimated by using the ratio of the mean and the standard deviation for a standardised 

regression coefficient, based on the split 4N repetitions presented by equation 

 𝑠 ൌ
భ
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, (10) 
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where bi,j represents the identified regression coefficient for training subset j and 

variable i. The model parameter distribution that has reduced average mean absolute 

error is considered to have the most suitable value for the Raman spectra data treatment 

based on the relative intensities peaks ratios and the phase fraction in the sample. 

Consequently, the final performance of the model can be evaluated using a coefficient 

of determination (R2) and mean absolute error (MAE). 

2.4.2 Multivariate analysis 

The use of robust multivariate techniques, such as successive projection algorithm 

(SPA), standard normal variate (SNV), and partial least squares (PLS) regression 

(Geladi & Kowalski 1986; Barnes, Dhanoa & Lister 1989), are some of the standard 

tools for extracting and conducting a quantitative analysis of Raman spectra data 

obtained from multi-components samples measured using Raman spectroscopy. 

For Raman spectra data, the use of partial least square (PLS) regression presents 

the opportunity to extract and analyse multi-component samples where there is a 

potential peak overlap (Heinz, Savolainen, Rades & Strachan, 2007). Multiple 

linear regression (MLR) used to treat Raman spectra data has shown to be 

potentially very unstable or provide inaccurate results in estimating the individual 

components in samples (Wold, Ruhe, Wold & Dunn III, 1984; Grinberg & 

Rodriguez, 2019). Therefore, the use of PLS regression provides relatively better 

options for multi-component Raman spectra data analysis.  

 In analysing multi-component samples measured with Raman spectroscopy, 

the spectra data is usually split into training and testing (external validation) sets. 

Depending on the nature of the Raman spectra data obtained, the process can 

require the use of normalisation to be carried out on Raman spectral datasets, as 

explained by Beattie, Glenn, Boulton, Stitt and McGarvey (2008). Generally, the 

testing (external validation) set is used for the assessment of the model performance. 

 Raman spectra of a sample containing multiple phases can contain numerous 

Raman peaks. Therefore, there is a requirement to use a pre-processing process to 

reduce the Raman spectral data dimensionality for a relatively very stable 

calibration model for the subsequent operation such as PLS (Wold et al., 1984; 

Fernandes de Oliveira Penido, Pacheco, Lednev & Silveira, 2016). Additionally, 

Guyon and Elisseef (2003) have shown that feature selection can be used to 

improve upon the estimation performance by extracting the relevant information 

from the Raman data to predict the phase composition in the sample and to enhance 

the interpretability.  
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A standard normal variate (SNV) pre-processing algorithm is used to correct 

any potential background effect or baseline shifting (Barnes et al., 1989). Guyon 

and Elisseef (2003) have also demonstrated that the use of SNV transformation and 

centring improves Raman spectra data analysis. Additionally, the SNV can be used 

to reduce potential sources of non-linearity that may be associated with the 

concentrations of the analysis from the measured Raman spectra obtained (Guyon 

& Elisseef, 2003). In addition, the potential challenges of the feature selection can 

be reduced by applying deterministic search engines such as successive projection 

algorithm (SPA) as suggested by Araújo et al. (2001). SPA provides the opportunity 

to select the relevant features and minimises the collinearity within the chosen 

feature set. 

Baumann (2003) has suggested that the multivariate technique, such as PLS 

regression model’s performance, improves when the feature selection is carefully 

carried out so that it reduces information from the Raman signal, from which a 

maximum estimate is obtained. According to Baumann (2003), an objective 

function addresses the potential challenges with the feature selection cross-

validation set. The objective function can be expressed as (Baumann, 2003) 

 min 𝐽 ሺ𝑏,𝑋ሻ ൌ  min∑ ሺ𝑦,௩ െ 𝑓൫𝑏,𝑋,௩൯ሻଶ

ୀଵ , (11) 

where J represents the objective function, X is a matrix with k columns and n rows, 

b is the model parameter vector, and f is the functional relationship with the signal 

features. 

A subsequent multivariate process, such as partial least squares (PLS) 

regression, is applied to the pre-processed Raman data. PLS regression presents a 

promising multivariate technique for Raman spectral data analysis, as shown in the 

literature available which demonstrates its applicability. For a typical Raman 

spectral data multivariate analysis using PLS regression, the data is usually 

randomly split into calibration and testing sets. The calibration set is used to 

generate the quantification model, and the testing set is for predicting the model.  

In the PLS regression analysis, an average spectral covariance is established 

between the Raman spectra data and concentration of the different phases, where X 

variables serve as the spectra intensities, and Y variables represent the concentration 

for the components in the sample. In the calibration procedure, the Raman spectra 

measured from the samples the X variables represent the independent and Y is 

dependent the variable. According to de Almeida, Correa, Rocha, Scafi and Poppi, 

(2013), X matrix can be denoted with n as the number of samples analysed and w 
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represented as the constituent number; the dependent variable Y is labelled so that 

z represents the number of properties of the components. The PLS regression 

expressed in the independent X and dependent Y variables can be given by 

equations (Poppi et al., 2013)  
 𝑋 ൌ 𝑇𝑃்  𝐸 (12) 
and  
 𝑌 ൌ 𝑈𝑄ᇱ  𝐸, (13) 

where T denotes the score matrix for X variables, PT represents the loading for the 

variables X, and EX is the residue for X. Furthermore, U is the score matrix for Y 

variables, Qʹ is the loading for the variable Y, and EY is the residue for Y.  

In assessing performance for the PLS regression calibration model, different 

statistical parameters such as the correlation coefficient R2, the root mean standard 

error in (RMSE), the root mean square error of calibration (RMSEC) and the root 

mean square error of prediction (RMSEP) are used in the model evaluation. The 

assessment features to assist in determining how well the individual component in 

the samples can be quantified; RMSE according to Kachrimanis, Braun & Griesser 

(2007) and Lopes et al. (2018) is expressed as 

 RMSE ൌ ට∑ ሺ௬ାŷሻమ

సభ


 , (14) 

where yi is the reference value, n indicates the number of samples, and ŷ represents 

the calculated value.  

Model validation  

To further enhance prediction performance and effectiveness for the calibration 
model in quantifying the specific component concentration in a sample, additional 
statistical parameters such as the range error ratio (RER) and the ratio of prediction 
to deviation (RPD) can be estimated. According to Lopes et al. (2018), the ratio of 
prediction to deviation (RPD) and the range error ratio (RER) can be expressed as 

 RDP୮୰ୣୢ ൌ
ୗୈౌీ
ୖୗ

 (15) 

and  

 RER ൌ
ሺெ௫ିெሻೝೡ

ୖୗ
, (16) 

where SDPRD is the standard deviation for the prediction set, RMSEP is the root mean 
square error of prediction, Max is maximum and Min is minimum (subscript refv 
denotes reference values). 
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The suggested criteria (Saeys, Mouazen, & Ramon, 2005; Quentin, Rodemann, 
Doutreleau, Moreau & Davies, 2017; Lopes et al., 2018) shows that if the RPD value 
is less than 1.5 (< 1.5) and the RER is less than 4 (< 4), the calibration model is 
considered unsatisfactory, while for a generally satisfactory model the RPD should 

range between 3–4.9 and the RER should be ≥ 10. The excellent calibration model 

is said to be achieved when the RRD value is above 5 (> 5) and ≥ 15 for the RER. 
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3 Experiment  

3.1 Description of the experimental procedure 

The raw materials used for this study were obtained from commercial suppliers 

with very high quality. Table 1 summaries the chemicals or phases obtained from a 

chemical supplier (Alfa Aesar) and those prepared in the laboratory of the 

University of Oulu process metallurgy research unit, Finland.   

Table 1. List of reagents or chemicals used for this study. 

Chemical Purity (wt%) Source 

Aluminium oxide (Al2O3) 99 Alfa Aesar 

Calcium oxide (CaO) 99 Alfa Aesar 

Monocalcium aluminate CaO∙Al2O3 99 Alfa Aesar 

Calcium sulphide (CaS) 99 Alfa Aesar 

Magnesium aluminate spinel, MgO.Al2O3 99 Alfa Aesar 

Tricalcium aluminate, 3CaO∙Al2O3 98–99 Prepared 

12CaO.7Al2O3 98–99 Prepared 

3.1.1 Preparation of synthetic inclusion samples  

Sintering process for 12CaO∙7Al2O3 and 3CaO∙Al2O3: Calcium aluminate phases 

of 12CaO.7Al2O3 (C12A7) and 3CaO∙Al2O3 (C3A) were prepared from calcium 

oxide (CaO) and aluminium oxide (Al2O3) powders. The powders were weighed 

with an analytical weighing balance and thoroughly mixed with a ball mill. The 

mixture was sintered in a graphite crucible and placed in an aluminium crucible 

filled with graphite powder with varying grain sizes, as illustrated in Figure 5, 

showing the isometric view of the crucible setup. The sample sintering was carried 

out in a chamber furnace at a temperature of 1350 °C and programmed as shown 

in Figure 6. The sintering process was repeated three to four times with 

intermediate milling until the required phase was within a range of 98–99 wt%. 
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Fig. 5.  The crucibles setup used for preparing the synthetic inclusion phases.  

 

Fig. 6. A graphical trend showing the temperature program for preparing the synthetic 

inclusion phases of C12A7 and C3A.  

3.1.2 Sample matrix  

A sample matrix for Papers I, II and III used for this study was prepared by 

measuring a varying weight percentage (wt%) of the starting phases (C12A7, CA, 

C3A, Al2O3 and MgO.Al2O3) to generate the synthetic binary or ternary systems. 

The mixtures were thoroughly mixed, pressed into pellets, placed in a crucible, and 

sintering was performed in a chamber furnace at a temperature of 400 °C. The 

sintering was carried out at 400 °C to remove potential moisture in the sample in 

order to prevent or reduce the moisture content for subsequent analysis. For studies 

(Papers IV and V), which contained CaS, the synthetic binary and ternary inclusion 

systems were prepared by measuring the approximate proportions of MgO.Al2O3, 

CA, C12A7, C3A or CaS. Careful mixing was employed to achieve homogenously 

prepared samples. CaS is quite sensitive to heat (as stated by the supplier, Alfa 
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Aesar) and this was also noted during initial experimental stages during the Raman 

spectroscopy measurements; therefore, subsequently, it was not suitable to heat the 

samples prepared as they were required to contain CaS as a component. Table 2 

presents the specific phases used for studies in Papers I–V.  

Table 2. Synthetic sample mixtures for Papers I–V. 

Paper Prepared phases 

I C12A7–CA and C12A7–C3A 

II Al2O3–MA, CA–MA, C12A7–MA and C3A–MA 

IV C12A7–CaS, C3A–CaS, CaS–MA, CA–CaS and Al2O3–CaS 

III C12A7–C3A–MA and C12A7–CA–MA 

V C12A7–CA–CaS, C3A–MA–CaS, MA–C12A7–CaS, C12A7–C3A–CaS and CA–MA–CaS 

The weight percentage (phase fraction) matrix design for the binary samples for 

Papers I, II and IV, were ranged between 20–90 wt% for the two-component content. 

A simple relation, such as yα + (100 – y)ß → 100 (wt%), where α and ß are the 

phases present in the sample, is used to describe how the binary system was 

prepared for this study. For Papers III and V, the complete sample design matrix 

was used by considering kn compositions, where k shows the number of design 

levels, and n denotes the design variables. Figure 7 illustrates examples of sample 

matrix presented in a ternary system for Paper III, which had a total of 43 samples 

for MA–C12A7–C3A (Figure 7 (a)) and 48 samples for C12A7–CA–MA (Figure 

7 (b)). 
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Fig. 7. Sample matrix for (a) C3A–C12A7–MA and (b) CA–C12A7–MA (Under CC BY 

license from Paper III © 2020 Authors).  
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3.2 Verification of synthetic inclusion samples prepared  

The synthetic phases prepared in the laboratory (C12A7 and C3A) and those (CA, 

CaS and MgO.Al2O3) obtained from the supplier (Alfa Aesar) were assessed using 

both X-ray diffraction (XRD) and X-ray fluorescence (XRF). The phase fraction or 

weight percentage proportion used for preparing the samples matrix was further 

analysed with XRD and XRF to ensure that the homogeneous samples were 

achieved for subsequent measurements. 

3.2.1 XRD and XRF 

The phase identification for synthetic inclusion samples prepared for this study was 

carried out by using X-ray diffraction (XRD) instrument to estimate the specific 

component (weight percentage, wt%) in the samples. The XRD instrument utilised 

for this study was a Rigaku SmartLab with 9 kW rotating Cu anode (45 kV and 200 

mA). Measurement was performed in Bragg-Brentano para-focusing geometry by 

using acquisition of 3 degrees per minute and 0.02 degrees per step. The instrument 

is also equipped with a 10 mm limiting slit found at the source side of the samples 

placed in standard glass holders, with 5-degree Soller slits used on both sides. A 

PDXL2 software suite with integrated access to a PDF-4 2018 database was used 

for estimating the weight percentage for the phases present in the samples measured 

with XRD. The elemental analysis was conducted using SuperQ software.  

X-ray fluorescence (XRF) was used to estimate and verify the elemental 

composition of the samples. The samples’ elemental analysis was performed using 

an XRF instrument provided by the University of Oulu’s Centre for Material 

Analysis. A Panalytical Axios Max XRF model instrument that has an X-ray 

generator and Rh tube with a maximum power of 4 kW was used. 

Further analyses were carried out to verify the homogeneity of the binary and 

ternary samples by measuring replicates of the prepared sample with the use of 

XRF and XRD. Consequently, some assumptions were taken into consideration to 

enable a comparison between the samples analysed with both XRD (phase 

identification) and XRF (elemental composition). These include: 

– Estimating the weight percentage or phase fraction for C12A7, CA and C3A 

based on the elemental composition (CaO, and Al2O3) obtained from XRF 

analysis results, which was done by using the molar mass of 12CaO∙7Al2O3 for 

C12A7, CaO∙Al2O3 for CA and 3CaO∙Al2O3 for C3A.  
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– The samples analysed with the XRD instrument were considered to have 

stoichiometric phases, and therefore, the prepared samples were assumed to 

contain only the phase analysed by the XRD instrument.  

– The XRD analysed data from the samples were normalised in the evaluation, 

from weight percentage (phase fractions) to elemental compositions, therefore 

making it possible to make a comparison with the XRF analysis results.  

– Similarly, the XRF analysis data from the prepared samples were normalised 

to the weight percentage or as phase compositions for a relatively more 

straightforward compared to the XRD analysed sample phase composition. 

– Additionally, all CaO estimated in the samples with the XRF analysis was 

assumed to be attributable to the calcium-aluminate (CaO–Al2O3) phases 

present for the same samples identified with the XRD.  

– All the Mg (MgO) estimated in the sample mixture (which contained MA) 

based on the XRF elemental composition analysis was considered to be 

associated with the presence of the MgO.Al2O3 (MA) spinel phase in the 

sample, since the other components (phases) used for this study, do not have 

elemental Mg as it composition apart from MA. 

3.3 Raman spectroscopic measurement  

The Raman spectroscopy (TimeGated® 532 Raman spectrometer, TG532 M1) used 

for the study was supplied by TimeGate Instruments Ltd, Finland. The Time-gated 

Raman spectroscopy was used to acquire the Raman spectra from the samples. The 

main operating parameters obtained from TG532 M1 user’s manual are illustrated 

in Table 3. There are a variety of excitation sources that can be used to irradiate the 

samples. The selection of the excitation sources (for the laser system) can be based 

on the spot size, resolution, wavelength and the sensitivity of the sample, and Table 

3 shows some basic features of the laser used for this work. One of the phases (CaS) 

is very sensitive heat (high laser power); therefore, for studies (Papers IV and V) 

that had CaS as a constituent of the sample mixtures, extra care was taken to adjust 

the laser power accordingly to ensure that the Raman spectra measured from the 

samples were not significantly affected by any potential heat generated from the 

laser.  
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Table 3. Basic features of time-gated Raman spectrometer Model TG532 M1. 

Instrument Component  Features  

Laser Centre wavelength; 532 nm, pulse repetition rate; 40–100 kHz, pulse 

width; <150 ps, average power; 30–60 mW and fibre-coupled. 

Probe head InPhotonics RPB532 with 105 µm excitation and 200 µm collection 

fibres. 

Spectrometer Fibre-coupled spectrograph with an optical resolution of approximately 

13 cm-1; delay electronics; CMOS-SPAD array detector; auxiliary 

electronics, and mechanics. 

Before the start of the Raman spectroscopy measurements, the samples (powders 

mixtures) were compacted into a cylindrical sample holder with a height of 

approximately 5.0 mm and a diameter of 20.0 mm. The laser beam was carefully 

focused on the sample. Figure 8 shows the time-gated Raman spectroscopy sample 

holder equipped with a rotating stage. The use of a rotating sample holder stage 

that ensures the illumination of the most section of the upper surface of the sample 

by a laser beam. All the Raman spectroscopy measurements were conducted at 

ambient conditions, at a spectra acquisition time of 1–3 minutes, with a 

wavenumber range between 100–1,200 cm-1, and a resolution of 10 cm-1. An 

average of three to five serial Raman measurements were conducted per sample. 

Generally, the Raman spectra /signal acquired within each sample in this work had 

insignificant variability in the Raman data and therefore, was considered relatively 

stable for the purpose of this study.  
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Fig. 8. Time-gated Raman spectroscopy sample holder equipped with a rotating stage. 

The Raman spectral processing software was provided by The TimeGate 

Instruments Raman company (TimeGated Model: TG532 M1) for data acquisition 

and for pre-processing the series measurement data. The software offers one the 

possibility to view the measured raw data in various graphical types, and also to 

estimate the shot-noise-limited SNR as well as to distinguish between the 

luminescence and Raman through baseline fitting. The raw data could be collected 

in ASCII formats for subsequent treatment processing. 
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4 Results and discussion  

This chapter summarises the main results concerning the application of Time-gated 

Raman spectroscopy from Papers I–V enclosed in this study into four sections. The 

first two sections present results from the sample's composition estimation (using 

XRD and XRF) and the Raman bands (shift) details for the synthetic phases used 

for this study. The third section presents the findings based on how to identify and 

quantify each synthetic inclusion phase content in the samples using Raman 

spectroscopy combined with calibration and multivariate models. Finally, the 

practical prospects are briefly discussed in the last section of this chapter according 

to the formation and modification mechanism routes (A, B and C) illustrated in 

Figure 9. The Paper I is assigned to route A, while Papers II and III are linked to 

route B, and Papers IV and V are associated with route C in Figure 9. 

 

Fig. 9. Schematic diagram illustrating possible routes for Al-killed calcium treated steel 

and how the results from Papers are presented.   

4.1 Identification of the sample’s composition using XRF and XRD  

The reference or starting constituents (phases) used in this study were prepared in 

the laboratory of process metallurgy research unit, University of Oulu (C12A7 and 

C3A) and others (CA, CaS and MgO.Al2O3) were acquired from a chemical 
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manufacturer. To estimate and verify the reference purity, XRD and XRF analyses 

were conducted to provide detailed information about the reference phases used to 

prepare the sample mixtures. Tables 4 and 5 are examples that are used to establish 

the relationship between XRD and XRF based on the results obtained from the 

analyses of the samples. These were carried out based on the estimated sample 

phase fraction or weight percentage (wt%) obtained using XRD, and the samples 

elemental analysis using XRF.  

These two analytical techniques (XRD and XRF) provide relatively different 

analysis information for the sample measured. Table 4 presents a comparison 

between the XRF measured elemental composition values (CaO and Al2O3), and 

the XRD values calculated based on the weight percentages of CaO and Al2O3. In 

Table 5, the initial composition for the samples prepared (phase weight percentages 

evaluated using XRD) was compared with the XRF phases evaluated based on 

elemental analysis. It can be observed in Table 4 and Table 5 that there is a slight 

variation between the XRF and XRD results. For example, the XRD and XRF 

results for the C12A7-C3A binary phase samples presented in Table 5 have an 

average difference of 2.92 wt% and a standard deviation of 0.52 wt%. 

It should be noted that the difference between the XRD and XRF analysed and 

calculated values did not significantly affect the measurements results in the 

subsequent process since these analytical methods also have their level of accuracy. 

Furthermore, the XRD and XRF analyses conducted on the samples serve as 

complementary techniques, and also the systematic difference does not have a 

significant impact since the analysis was made in relative terms. Some of the 

assumptions made during the estimation process to compare the two analytical 

techniques (XRD and XRF) are explained in section 3.2.1of this thesis. 
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Table 4.  XRD and XRF analyses for binary calcium aluminates phases of C12A7-C3A 

(Reprinted with permission from Paper I © 2019 ISIJ).  

 

Sample 

XRD analysis (wt%) Calculated from  

XRD results (wt%) 

XRF analysis 

(wt%) 

Difference between 

XRD and XRF (wt%) 

 C12A7 C3A CaO Al2O3 CaO Al2O3 CaO Al2O3 

X1 80 20 51.28 48.72 54.01 45.99 2.73 -2.73 

X2 74 26 52.10 47.90 54.99 45.01 2.89 -2.89 

X3 72 28 52.37 47.63 54.47 45.53 2.10 -2.10 

X4 65 35 53.34 46.66 56.21 43.79 2.87 -2.87 

X5 61 39 53.89 46.11 56.92 43.08 3.03 -3.03 

X6 53 47 54.98 45.02 58.85 41.16 3.86 -3.86 

X7 42 58 56.50 43.50 58.82 41.18 2.32 -2.32 

X8 40 60 56.77 43.23 59.94 40.06 3.17 -3.17 

X9 33 67 57.73 42.27 61.66 38.34 3.93 -3.93 

X10 31 69 58.01 41.99 60.96 39.04 2.95 -2.95 

X11 27 73 58.56 41.44 61.25 38.75 2.69 -2.69 

X12 21 79 59.38 40.62 61.94 38.06 2.56 -2.56 
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Table 5. Initial sample composition and XRF analyses for binary aluminate spinel-

calcium aluminate phases of C12A7-MA and CA-MA (Reprinted adapted with 

permission from Paper II © 2020 ISIJ). 

Initial phase composition (wt%) XRF results and calculated phase composition (wt%) 

C12A7–MA C12A7 MA Ca Al Mg C12A7 MA 

 85 15 32.4 26.4 2.9 85 15 

 81 19 31.2 26.8 3.5 82 18 

 76 24 29.8 27.8 3.4 81 19 

 67 34 24.1 29.3 6.6 64 36 

 43 57 17.5 32.5 8.5 50 50 

 38 62 15.3 33.2 9.6 44 56 

 29 72 9.6 35.2 12.1 28 72 

 19 81 8.0 36.3 12.2 24 76 

 10 91 4.5 37.8 13.4 13 87 

 5 95 2.4 39.0 13.8 7 93 

        

CA–MA CA MA Ca Al Mg CA MA 

 90 10 26.7 31.8 1.5 87 13 

 80 20 23.6 33.4 2.3 79 21 

 70 30 20.6 33.7 4.5 68 32 

 60 40 18.2 34.5 5.6 55 45 

 50 50 15.4 35.3 7.0 45 55 

 40 60 13.0 36.9 7.3 37 63 

 30 70 10.3 36.8 9.7 29 71 

 20 80 7.6 37.8 10.8 21 79 

 10 90 4.6 38.9 12.1 13 87 

 5 95 2.5 39.3 13.3 7 93 
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4.2 Identifiable Raman bands for synthetic inclusion phases 

Table 6 presents the Raman bands or shift (cm-1) for the synthesised inclusion 

phases of CA, C12A7, CaS, C3A, and MgO.Al2O3 spinel used for this study. The 

Raman bands identified for each phase in this work corresponds with what had been 

previously reported in literature within a range of ± 5 cm-1 (Cormier & Massiot, 

2010; Malavergne et al., 2013; Neuville, Henderson, Torréns-Martín et al., 2013;  

Sahoo et al., 2017).  

Table 6. Raman shift or bands (cm-1) for the synthetic inclusion phases (Reprinted 

adapted under CC BY license from Paper IV © 2020 Authors). 

Phase Measured peaks 

[Raman shift, cm-1] 

Reference  

[Raman shift, cm-1] 

Reference 

CaS 157–160 s, 200 m, 

478 w 

160 s, 185 m, 215 (±15), 485 (±10) w (Malavergne et al., 

2013) 

CA 525 s, 549 m, 790 w 520–521 s, 545–547 m, 790–793 w 

 

(Neuville et al., 

2010; Torréns-

Martín et al., 2013) 

C12A7 517 s, 781 m, 314 

m 

312–333 m, 516–517 m, 772 m, 779 m 

 

(Neuville et al., 

2010; Torréns-

Martín et al., 2013) 

C3A 756 s, 508 m 756–757 s, 140–150 w, 506–508 m  

 

(Neuville et al., 

2010; Torréns-

Martín et al., 2013) 

MgO.Al2O3 416 s, 674 m, 773 

m 

409–412 s, 767–772 m, 666–674 m, 

312–313 m 

(Sahoo et al., 2017) 

s is strong Raman signal, m is a medium Raman signal, w is weak Raman signal. 

The main Raman peaks or bands observed at 525 cm-1 for CA, 508 cm-1 attributable 

to C3A and 517 cm-1 for C12A7 have bridged oxygens in the Al–O–Al linkages or 

are associated with symmetric stretching of the Al–O bonds in AlO4
5- groups 

(McMillan & Piriou, 1983; Torréns-Martín et al., 2013). Raman bands located at 

790 cm-1 for CA, 781 cm-1 for C12A7, and 756 cm-1 for C3A are assigned to 

asymmetric stretching modes found in AlO4
5- tetrahedra ( McMillan & Piriou, 1983; 

Torréns-Martín et al., 2013). Therefore, for calcium-aluminate system 

characteristic vibration modes of the distinctive bonded framework, Al–O is used 

to distinguish the difference in phases. Based on the Raman spectroscopy 

measurements conducted on the phases, the 12CaO∙7Al2O3 (C12A7) phase had the 

most intense Raman peak position at 517 cm-1 and is located within a Raman band 
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region of 510–520 cm-1. Tricalcium aluminate (C3A) has the most identifiable and 

most intense Raman band position at 756 cm-1, with a medium Raman peak at 508 

cm-1. Additionally, monocalcium aluminate (CA) has its most intense Raman peak 

at 525 cm-1 and peak shoulder in the 545–549 cm-1 region and with a weak Raman 

peak at 790 cm-1.  

Raman bands observed at 416 cm-1 for MgO.Al2O3 spinel is associated with a 

bending mode of Al ions located in tetrahedral sites, and for 674 cm-1 they are 

linked to bands due to the bending motion that occurs in octahedral sites of Mg 

atoms (Dash et al., 2017). Additionally, a medium Raman band at 773 cm-1 is a 

result of the symmetric stretching of the AlO4- in tetrahedral sites (Sahoo et al., 

2017). The MgO.Al2O3 (MA) phase has its most intense Raman peak located at 416 

cm-1 and located within a region of 410–420 cm-1. 

Figure 10 shows the Raman spectra measured from each specific phases used 

for preparing the sample mixtures for this study. For the CaS phase, the most 

intense Raman peak identified is found to be at 157 cm-1 and with a medium peak 

around 200 cm-1 and 478 cm-1. 
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Fig. 10. Raman spectra for the synthetic phases of MgO.Al2O3 (MA), C3A, C12A7, CA, 
Al2O3 and CaS (Reprinted adapted under CC BY license from Paper IV © 2020 Authors). 

4.2.1 Raman spectral observations based on the phases studied 

The ability to observe the Raman peak (bands) characteristic of a constituent in a 

sample measured using Raman spectroscopy provides first-hand information to 

consider if this type of vibrational spectroscopic system can be a robust 

characterisation technique. For this reason, a qualitative analysis was conducted by 

relating the specific phase (C12A7, C3A, CA, CaS or MgO.Al2O3) variation for a 

set of sample mixture with the change in the relative Raman peak intensity. Figures 

11–13 illustrate how the observations made based on varying the individual phases 

content in a sample can affect the relative Raman peak (band) intensity.   
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Sample mixtures that consist of C12A7, CA, C3A and MgO.Al2O3 

Figure 11 shows the Raman spectra for samples that contain C12A7 and C3A in a 

binary system with varying phase content. In Figure 11, an increment in the C12A7 

phase content causes a corresponding rise in the peak intensities at the Raman band 

region of 510–520 cm-1. A similar trend can also be noticed for a change in the 

phase component for C3A (an increase or decrease) in C12A7-C3A had the 

corresponding effect on Raman region of 750–760 cm-1. These patterns observed 

in C12A7-C3A demonstrates that a variation in most intense Raman peak at 756 

cm-1 for C3A, relative to the most intense Raman peak 517 cm-1 for C12A7 can be 

associated with the change in the sample phase content.  

Fig. 11. Raman spectra for the binary C12A7-C3A phase sample: (a) 20% of C12A7, (b) 

40% of C12A7, (c) 50% of C12A7, and (d) 80% of C12A7 phase fraction (Reprinted 

adapted with permission from Paper I © 2019 ISIJ). 

For the MA phase content, it can be observed in Figure 12 that varying the MA 

phase content in the sample (C12A7-MA) has a corresponding effect in the Raman 

shift region of 410–420 cm-1. An increment in the phase content for MA also 
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demonstrates a corresponding rise in the most intense Raman peak at 416 cm-1, a 

characteristic feature of the MA phase. A similar observation could be made for the 

change in C12A7 content in the binary sample consisting of C12A7 and MA 

(C12A7-MA) at the most intense Raman peak found in the Raman band region of 

510–520 cm-1. 

 

Fig. 12. Raman spectra for a binary C12A7-MA phase sample: MA content (a) 20 wt%, (b) 

40 wt%, (c) 60 wt% and (d) 80 wt% (Reprinted adapted with permission from Paper II © 

2020 ISIJ).  

Raman spectral observation for CaS phase 

The ability to qualitatively estimate the phase content of CaS in a complex system 

such as CaS–(Al2O3–CaO)–MgO.Al2O3 using Raman spectroscopy can contribute 

and provide initial information for inclusion studies. Figure 13 is used to 

qualitatively show how the relative intensity of the Raman bands unique to a 

specific phase can be used to observe the phase content change in a ternary sample 
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system (MA–C12A7–CaS). Observations concerning the CaS phase in the MA–

C12A7-CaS system show an increment in the phase content for CaS exhibits a 

rising Raman peak intensity in the region of 157–162 cm-1. This increase in 

intensity within the Raman band region (157–162 cm-1) relates to the most intense 

Raman peak of CaS located at around 157 cm-1. Similarly, varying C12A7 and 

MgO.Al2O3 constituents in the MA–C12A7–CaS ternary system all had their most 

intense Raman bands (at 517 cm-1 for C12A7 and 416 cm-1 for MgO.Al2O3) 

intensity which also changed corresponding to the phase content in the samples 

(MA–C12A7–CaS), as discussed in the previous sections.  

 

Fig. 13. Raman spectra of MA–C12A7–CaS ternary samples: (a) 70MA–20C12A7–10CaS, 

(b) 35MA–45C12A7–20CaS, and (c) 45MA–10C12A7–45CaS. Phase compositions given 

in wt% (Reprinted adapted with permission from Paper V © 2020 Wiley-VCH). 
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4.3 Phase quantification based on Raman spectral data  

For quantitative evaluation, Tables 7–12 present the estimated statistical 

assessment parameter values, such as the mean absolute error (MAE), root mean 

standard error in calibration (RMSEC), root mean standard error in cross-validation 

(RMSECV), and coefficient of determination (R2). Figures 14–15 illustrate the 

estimated MAE, the relative stabilities (Si), the ratio of prediction to deviation 

(RPD), and the range error ratio (RER) of the calibration model. The most stable 

calibration variable candidate should have the highest degree of accuracy and 

repeatability based on the figure of merits. 

4.3.1 Calcium aluminate phases 

The most desirable calcium aluminate inclusion is C12A7 since it is fully liquid 

under casting temperatures. On the other hand, other calcium aluminate phases of 

CA and C3A which can be formed in an attempt to achieve C12A7 under steel 

making conditions. The potential of forming CA and C3A along with C12A7 could 

depend on Ca addition in Al-killed steels and the activity of Al. Table 7 illustrates 

the coefficient of determination and the mean absolute error (MAE) values for 

Raman band ratio based on evaluating C12A7, C3A and CA content in the binary 

samples (C12A7-C3A and C12A7-CA ). The Raman band ratio for 517/508 was 

estimated to have the best figure of merits compared to other peaks ratio in Table 7 

for C12A7-C3A samples. However, for Raman spectroscopy to be used for both 

qualitative and quantitative estimation, it is recommended that the Raman band 

ratio of 517/756 is used as it has the second most promising values. Additionally, 

these Raman peaks are the most intense for C12A7 at 517 cm-1 and C3A at 756 cm-

1 with fewer possibilities of peak overlap.   
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Table 7. Evaluation of the coefficient of determination (R2) and mean absolute error 

(MAE) of the prediction and validation between the relative intensity of the Raman peaks 

and measured phase fraction for C12A7-C3A and C12A7-CA samples (Reprinted 

adapted with permission from Paper I © 2019 ISIJ). 

  Training data Validation (ExVal)  

Phases 
Relative 

intensity  
Mean (R2) Mean (MAE) Mean (R2) 

Mean 

(MAE) 

Relative     

Stability   

C12A7–C3A 517/508 0.97 2.69 0.97 3.04 0.32 

 517/756 0.96 2.94 0.96 3.31 0.27 

 314/756 0.94 3.67 0.93 3.78 0.16 

 314/508 0.92 4.02 0.91 4.26 0.12 

 781/756 0.91 4.74 0.93 5.22 0.09 

 781/508 0.83 6.46 0.85 6.87 0.05 

       

C12A7–CA 314/549 0.97 2.52 0.97 2.70 0.27 

 314/522 0.94 3.69 0.93 3.93 0.18 

 
314/790 0.92 4.14 0.90 4.41 0.11 

517/522 0.88 4.46 0.88 5.09 0.09 

 
517/549 0.84 5.64 0.82 6.09 0.08 

517/790 0.86 5.70 0.87 6.24 0.06 

 781/549 0.95 3.19 0.94 3.34 0.20 

 781/522 0.45 11.12 0.43 12.20 0.00 

 781/790 0.03 14.41 0.17 15.51 0.01 

To quantify the C12A7 content in C12A7-CA samples, the relative Raman intensity 

ratio (314/549), where 314 cm-1 is for C12A7 and 549 cm-1 is for CA, gave the best 

coefficient of determination and had relatively the smallest mean absolute error 

values as presented in Table 7. The stability analysis from the studies also suggested 

that the Raman peak ratio of 314/549 for estimating C12A7 or CA phase content in 

C12A7-CA samples gave relatively the best figures of merits compared to others. 

Furthermore, for a C12A7-CA binary system, Raman bands at 314 cm-1 (a 

characteristic feature for C12A7) and 549 cm-1 (attributable to the CA phase) are 

farther away from each other than 517 cm-1 and 525 cm-1, and therefore there is less 

possibility of overlapping. Consequently, from the study, it is suggested that 

medium peaks should be used to distinguish phases in C12A7-CA samples since 

there is the possibility of peak overlap to occur at the most intense Raman peaks 

for C12A7 at 517 cm-1 and for CA at 525 cm-1.  
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4.3.2 Calcium aluminate – MgO.Al2O3 sample mixtures 

The target towards steel cleanliness may encounter operational and control 

complexity, for example, the presence of elements such as Mg in the steel melt. The 

formation of both MgO.Al2O3 and calcium aluminate inclusions, such as C12A7, 

C3A and CA, are possible to be found in steel samples containing inclusion. 

Furthermore, the use of calcium treatment to modify Al2O3 and spinel contribute to 

the formation of inclusions that exist in a MgO–Al2O3–CaO ternary system (Seo et 

al., 2010; Yang et al., 2011; Verma et al., 2012; Jiang et al., 2013; Tabatabaei et al., 

2018). The researchers have demonstrated how relevant the MgO–Al2O3–CaO 

ternary system is to inclusion studies. The results presented and discussed in this 

section examine how to quantify a synthetic inclusion mixture consisting of 

MgO.Al2O3, C12A7, C3A and CA using Raman spectroscopy. 

The results here are inclusion systems that contain an MgO.Al2O3 (MA) spinel 

phase enveloped with calcium aluminate phases, such as CA, C12A7, C3A (Yang 

et al. 2012 and Deng et al. 2013). Table 8 (a–c) shows a binary system for C12A7-

MA, C3A-MA and CA-MA for evaluating MA content in an MA–calcium 

aluminate (CA, C12A7 and C3A) system. The performance parameters of MAE 

and R2 show that the Raman peak intensity ratio of 517/416 had the best values for 

samples containing C12A7-MA, as shown in Table 8 (a). Similarly, for C3A-MA 

samples, the ratio of the peak intensities of Raman bands at 416 cm-1 for MA and 

756 cm-1 for C3A produce the best R2 and the lowest MAE values, as demonstrated 

in Table 8 (b). Figure 14 shows a graphical representation for the estimated mean 

absolute error values and the relative stabilities for C3A-MA samples.   

Additionally, in Table 8 (c), for samples consisting of CA and MA in CA-MA 

samples, the Raman band with the relative intensity ratio with better a mean 

absolute error and the highest linear regression coefficient of determination was 

416 cm-1 for MA and 522 cm-1 for CA. Consequently, based on this study, it can be 

concluded that the most intense Raman peaks for the phases at 416 cm-1 for MA, 

756 cm-1 for C3A, 517 cm-1 for C12A7, and 522 cm-1 for CA are the most suitable 

for the quantitative estimation of (CaO–Al2O3)–MA binary samples. 
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Table 8. Estimation of the coefficient of determination (R2) and mean absolute error 

(MAE) of the prediction and validation between the relative intensity of the peaks and 

phase content for MA in calcium aluminate (CA, C12A7 and C3A)–MgO.Al2O3 (MA) 

system (Reprinted adapted with permission from  Paper II © 2020 ISIJ). 

  Training data Validation    

Phases 

 

Relative 

intensity 

Mean 

(R2) 

Mean 

(MAE) 

Mean  

(R2) 

Mean 

(MAE) 

Relative 

Stability 

Sum 

(MAE) 

a: C12A7-MA 517/416 0.99 0.08 0.99 0.08 0.71 0.16 

517/674 0.86 0.31 0.87 0.32 0.05 0.63 

781/416 0.96 0.17 0.96 0.18 0.18 0.35 

781/674 0.91 0.25 0.91 0.26 0.06 0.51 

b: C3A-MA 756/416 0.98 0.13 0.98 0.15 0.52 0.28 

508/416 0.97 0.13 0.97 0.14 0.40 0.27 

756/674 0.72 0.44 0.77 0.49 0.04 0.93 

508/674 0.67 0.47 0.78 0.54 0.03 1.01 

c: CA-MA 522/416 0.97 0.13 0.97 0.15 0.60 0.28 

549/416 0.92 0.21 0.92 0.23 0.20 0.44 

522/674 0.73 0.44 0.77 0.47 0.09 0.91 

549/674 0.85 0.28 0.85 0.29 0.10 0.57 
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Fig. 14. Estimation for relative stabilities (Si) of the calibration variable candidates and 

mean absolute error values for training and validation sets for C3A-MA (Reprinted 

adapted with permission from Paper II © 2020 ISIJ). 

Table 9 shows the figures of merits for estimating the individual phase fraction (CA, 

C12A7, C3A, MA) in the MgO–Al2O3–CaO ternary system. Table 9 illustrates 

MAE that ranges between 2.31 to 3.75 wt%, and with R2 ranging between 0.96–

0.97 when a normalisation method is used for treating the Raman spectral data. 

However, it is worth indicating that the figures of merit without normalisation for 

the C12A7 phase gives R2 =0.6 and MAE = 9.6 wt% for the external dataset. 

Therefore, for optimum calibration model performance for these set of samples, it 

is recommended to normalise the Raman spectral data.  
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Table 9. Figures of merit for each of the calibration models measured with different data 

splits (Under CC BY license from Paper III © 2020 Authors). 

Phase R2
t MAEt R2

iv MAEiv R2
ev MAEev nf nlf 

C12A7 0.93 2.76 0.96 3.77 0.96 3.44 5 5 

C3A 0.96 2.63 0.96 3.54 0.97 3.07 6 4 

MA 0.97 3.13 0.99 2.31 0.97 2.31 15 10 

CA 0.96 2.62 0.96 2.72 0.96 3.75 10 9 

t = training set, iv = internal validation set, ev = external validation set, f = features, lf = latent features. 

4.3.3 Calcium aluminate – MgOꞏAl2O3 – CaS system 

The formation of both MgO.Al2O3 and CaS, along with calcium aluminate 

inclusions such as C12A7, C3A and CA, can be attributable to a high amount of 

sulphur or Mg in the steel melt, and operational challenges such as ineffective 

calcium treatment process. The results presented in this section examine how to 

quantify duplex oxide-sulphide and a ternary system of synthetic inclusion mixture 

consisting of C12A7, C3A, CA, MgO.Al2O3 and CaS using Raman spectroscopy 

combined with calibration models.  

The model performance assessment features, such as the coefficient of 

determination (R2), mean absolute error (MAE) and relative stabilities (Si), all 

demonstrate that the most intense Raman peak ratios are most suitable for 

estimating the individual phase fraction in the binary samples. The results for the 

C12A7-CaS samples are presented in Table 10 (a), where the most intense Raman 

peak ratio of 517/157 (C12A7/CaS) demonstrated to be the best candidates for 

evaluating samples that contain only CaS and C12A7. Similarly, in Table 10 (b), 

the CaS-C3A samples had the suitable Raman peak ratio of 766/157, having the 

best R2, MAE, and Si values suitable for evaluating the phase content in the CaS-

C3A binary system.   

For CA-CaS samples, Table 10 (c) further shows that the best figure of merits 

is the relative Raman peak intensity ratio of 157/524, where 157 cm-1 is attributable 

to CaS and 524 cm-1 is for CA phase constituents in the sample. Therefore, to 

evaluate the specific phase content in the CA-CaS samples, the most intense peaks 

for CaS and CA should be considered in the analysis of this type of sample. 

Consequently, the most intense Raman peaks for CaS, C12A7, C3A, and CA can 

be used for the quantitative estimation of individual phases in the samples studied.  
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Table 10. Evaluation of the coefficient of determination (R2) and mean absolute error 

(MAE) for the prediction and validation between the phase content and relative intensity 

of the Raman peaks and phase content for CaS-(C12A7, C3A and CA) binary samples 
(Reprinted adapted under CC BY licence from Paper IV © 2020 Authors). 

  Training data Validation   

Phases Relative 

intensity 

Mean  

(R2) 

Mean 

(MAE) 

Mean 

 (R2) 

Mean 

(MAE) 

Sum 

(MAE) 

Relative 

Stability 

a: C12A7-CaS  517/157 0.98 2.76 0.98 2.96 5.72 0.98 

 517/200 0.84 8.03 0.84 8.72 16.75 4.44 

 781/157 0.90 6.06 0.90 6.43 12.49 1.54 

 781/200 0.75 10.49 0.72 11.31 21.80 3.78 

b: C3A-CaS 510/157 0.96 4.03 0.97 4.07 8.10 0.67 

 766/157 0.88 6.50 0.88 6.92 13.42 0.09 

 510/190 0.87 7.72 0.86 8.74 16.46 0.16 

 766/190 0.85 8.07 0.82 8.97 17.04 0.08 

c: CaS-CA 157/524 0.97 3.49 0.98 3.71 7.20 0.48 

 157/790 0.92 6.08 0.93 6.12 12.20 0.15 

 200/524 0.94 5.30 0.94 5.50 10.80 0.17 

 200/790 0.83 9.27 0.84 9.49 18.76 0.07 

This study further examines how to estimate the phase content of CA, C12A7, C3A, 

CaS and MgO.Al2O3 spinel (MA) in a MgO.Al2O3–CaS–(CaO–Al2O3) ternary 

system by using a multivariate technique such as a PLS regression model. Five 

ternary samples of MA–C12A7–CaS, C12A7–CaS–CA, MA–CA–CaS, C12A7–

CaS–C3A and MA–C3A–CaS were studied. The coefficient of determination (R2), 

root mean standard error in calibration (RMSEC), root mean standard error in 

cross-validation (RMSECV), and root mean square error of prediction (RMSEP) 

were the statistical parameters used for assessing calibration model performance, 

which are presented in Table 11. The average R2, RMSEC, RMSECV and RMSEP 

values for pre-processed Raman data using standard normal variate (SNV) 

performed relatively very well compared to the raw Raman spectral data for the 

calibration model, as illustrated in Table 11. 
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Table 11.  The average figures of merit values for calibration and validation based on 

the PLS models for estimating C12A7, C3A, CaS, CA and MA from a MgO.Al2O3–CaS–

(CaO–Al2O3) ternary system (Paper V). 

Phase Method R2
CAL R2

CV R2
PRED RMSEC, 

(wt%) 

RMSEC, 

(wt%) 

RMSEP, 

(wt%)   

C12A7 Raw 

Data 

0.88 0.73 0.77 6.95 11.12 9.98 

 SNV 0.99 0.95 0.99 1.70 3.82 2.00 

C3A Raw 

Data 

0.95 0.83 0.81 4.54 9.83 9.41 

 SNV 0.99 0.93 0.97 1.79 5.04 3.48 

CaS Raw 

Data 

0.86 0.75 0.77 8.02 12.35 11.19 

 SNV 0.99 0.95 0.98 2.37 5.31 3.11 

CA Raw 

Data 

0.71 0.56 0.66 13.26 16.46 15.33 

 SNV 0.99 0.95 0.98 3.06 6.13 4.02 

MA Raw 

Data 

0.94 0.84 0.81 5.19 9.70 10.29 

 SNV 0.98 0.95 0.97 2.35 4.98 4.00 

To further enhance the reliability of the calibration model, validation assessment 

parameters, such as the ratio of prediction to deviation (RPD) and the range error 

ratio (RER), were used. Table 12 shows the average values for RPD and RER used 

for estimating the specified phases of C12A7, CA, C3A, CaS and MA in the ternary 

samples studied in Paper V. Figure 15 (a) and (b) illustrates a bar chart 

demonstrating the performance of each phase based on the calibration model. In 

Figure 15 (a) and (b), when the bars assigned to each specific phase component in 

the sample mixture are equal or exceed the horizontal dotted line (red ink), this 

shows that the phase can be predicted satisfactorily based on the RPD (Figure 15(a)) 
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and RER (Figure 15(b)) values. Raman spectra data treated with SNV exhibit better 

figures of merit compared to raw Raman data. Consequently, the use of a 

multivariate technique such as the PLS regression model shows that pre-processing 

the Raman spectra data gives more enhanced statistical parameters for estimating 

individual phase content in a MgO.Al2O3–CaS–(CaO–Al2O3) ternary system.  

Table 12. The average RDP and RER values for assessing the performance of the 

specific phases of C12A7, C3A, CaS, CA and MA in a MgO.Al2O3–CaS–(CaO–Al2O3) 

ternary system (Paper V).  

Component 

(Phase) 

Mean RDP values Mean RER values 
Raw SNV Raw SNV 

C12A7 2.57 9.56 10.76 36.82 

CA 1.74 6.53 5.33 20.00 

C3A 2.63 6.63 9.24 22.41 

CaS 2.74 9.05 8.45 28.47 

MA 3.16 6.31 9.99 21.25 
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Fig. 15. Graphical chart of the data presented in Table 12 showing the performance for 

raw Raman data and SNV Raman data using (a) RDP and (b) RER values to estimate 

specific phases in a MgO.Al2O3–CaS–(CaO–Al2O3) ternary system (Paper V). 
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4.4 Prospect for application of Raman spectroscopy for steel 

samples studies  

For the practical prospect of this study for non-metallic inclusions analysis in the 

steel samples, it is essential to consider the following parameters to ensure the 

effective utilisation of this study; 

– Sample features: The samples (synthetic inclusions phases) used for this study 

could potentially have slight variation compared with actual steel samples 

relative to the inclusion size distribution and surface area. Non-metallic 

inclusions found within steel matrix are could generally be smaller in size and 

also in surface area compared to the samples used for this study.   

– Raman spectroscopy: This technique (Raman spectroscopy) is generally 

considered as a surface phenomenon; therefore, it essential to take note for its 

application for inclusions with high depth within the steel matrix. Also, the 

laser beam focused on steel samples the during Raman measurement could 

generate Raman spectra containing numerous peaks for the Raman active 

composition of inclusions present in the sample. The prospect application for 

inclusion studies for steel samples to predict the presence of the phases 

analysed in this study can be identified based on the Raman peaks (bands) 

characteristic of the specific phase, as demonstrated from the studies conducted 

by Li & Hihara (2017).  

The prospect of using vibrational spectroscopic techniques such as Raman 

spectroscopy for non-metallic inclusion based on this study can be explored for: 1) 

predicting liquidus region for a CaO–Al2O3 binary system and 2) inclusion 

evolution, formation and steel cleanliness assessment. 

4.4.1 Liquidus region prediction  

The general target for calcium treatment in Al-killed steel is to form calcium 

aluminate inclusion of C12A7 (12CaO.7Al2O3) due to its lowest liquidus 

temperature. Figure 16 illustrates FactSageTM software program used for estimating 

the stability areas for CA, C12A7 and C3A phases within the CaO–Al2O3 system, 

and to show the liquidus region under steelmaking temperatures. From Figure 16, 

it could be predicted that the liquidus temperature of the calcium aluminate 

inclusions had exceeded the average casting temperature of approximately 
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1,520 °C considering that the CaO/Al2O3 (weight ratio) is found outside the 

estimated range of 0.75–1.27.  

 

Fig. 16. Phase diagram of the binary CaO–Al2O3 system (Reprinted with permission 

from Paper I © 2019 ISIJ). 

For a C12A7-C3A system, when Raman spectral analysis indicates that the weight 

ratio of CaO/Al2O3 is above 1.79 ± 0.07, the calcium aluminate inclusions would 

be solid in a casting temperature of 1,520 °C. Similarly, for a C12A7-CA binary 

system, if the weight ratio of CaO/Al2O3 is found to be below 1.02 ± 0.04, the 

Raman measurement and analysis could predict that calcium aluminate inclusions 

would be more solid under an average casting temperature of 1,520 °C. The 

accuracy for estimating the evolution of C12A7 to C3A phase had mean absolute 

errors of 2.97 percentage points. For the modification of C12A7 to CA, an 

estimated mean absolute error of 2.55 percentage points was reported. Therefore, 

to predict liquid calcium aluminate inclusions, taking into consideration the error 

associated with the weight ratio of CaO/Al2O3, the Raman peak ratio values should 

exceed values of 0.98 for C12A7-CA and relatively below 1.86 for C12A7-C3A. 
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4.4.2 Predicting evolution and formation routes for non-metallic 

inclusions based on Raman spectroscopy  

The evolution and formation of inclusions could have various routes, such as Al2O3 

→ MgO.Al2O3, (MA) → CaO.Al2O3 (CA) → MgO.Al2O3–CaS–(CaO–Al2O3) have 

been demonstrated by various researchers (Seo et al., 2010; Yang et al., 2011; 

Verma et al., 2012; Jiang et al., 2013; Tabatabaei et al., 2018) and the Papers I – V 

used for this study (illustrated in Figure 9). Papers II and III demonstrate the routes 

for predicting the evolution and formation of inclusions for the multiphase 

composition of (CaO)x(Al2O3)y–MgO.Al2O3. Raman spectroscopy used for 

identifying and quantifying the specific phases (C3A, C12A7, CA and MA) in the 

samples shows that the binary systems (as presented in Paper II) relatively had the 

best level of accuracy compared to the ternary system (Paper III).  

 For route containing duplex oxide-sulphide inclusions such as CaS-C12A7, 

CaS-CA, MA-CaS (Paper IV) and for (CaO–Al2O3)–MgO.Al2O3–CaS system 

(presented in Paper V), it was observed that binary systems also had a higher level 

of accuracy compared to the ternary system (MA–C12A7–CaS, C12A7–CaS–CA, 

MA–CA–CaS, C12A7–CaS–C3A and MA–C3A–CaS) in predicting the phases 

present in the samples. However, the use of algorithm such as standard normal 

variate (SNV) for pre-processing the Raman spectral data provides enhanced 

results for estimating specific phases in a ternary system (Paper V).  

This study shows Raman spectroscopy as a very promising analytical 

technique for the characterisation of synthesised inclusion that consists of the low 

melting phase of C12A7, partial liquidus phase of C3A, and potentially detrimental 

phases of CA, CaS and MgO.Al2O3. Consequently, this offers a potential reference 

database for future inclusion analysis of steel samples concerning the use of Raman 

spectroscopy, and also as a continuation of widening the scope of the application 

of Raman spectroscopy for inclusion characterisation for steel samples since steel 

matrix is not Raman active. 
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5 Conclusions and future work  

5.1 Conclusions 

This study investigated the application of Raman spectroscopy as a potential 

characterisation technique for the study of non-metallic inclusions commonly 

associated with Al-killed treated with calcium steels. 

The binary sample mixtures between the C12A7 and CA or C3A were analysed 

with Raman spectroscopy. The prediction of the most suitable CaO/Al2O3 ratio that 

forms a mixture of C12A7-CA and C12A7-C3A within liquidus region in a CaO–

Al2O3 binary system was also investigated. C12A7 is the most desirable inclusion 

for Al-killed treated with calcium steels since it is fully liquid under steelmaking 

temperatures. Therefore, this study considered the two closest phases to C12A7 in 

a CaO–Al2O3 binary system (CA and C3A). 

Experimental measurements using binary systems were conducted to study the 

Raman spectra obtained from a mixture between calcium aluminates phases 

(C12A7, CA and C3A) and potential detrimental phases such as MgO.Al2O3 (MA) 

and CaS. The binary samples consisted of (CaO–Al2O3)–MA and duplex oxide–

sulphide (CaS). Based on the Raman spectra measured from the samples, 

observations were used to estimate the individual phase content qualitatively. A 

change in phase content in the samples had a corresponding effect on the Raman 

band (peak) intensity attributable to the specific phase that makes up the sample. 

Calibration models were utilised to quantify the individual phase content present in 

the samples prepared. Based on the performance from the figures of merits, such 

as the coefficient of determination, MAE, and relative stabilities, the most suitable 

Raman peak ratio was selected for estimating the phase fraction in the samples. 

Further experimental measurement works were carried out to demonstrate the 

use of Raman spectroscopy to distinguish synthetic inclusion phases in a ternary 

sample system that consisted of CA, C12A7, C3A, CaS and MA. Robust 

multivariate techniques such as PCA and PLS regression were used for establishing 

the calibration models to assist in the identification and quantification of the 

individual phases present in the ternary samples. The study also demonstrated the 

relevance of applying pre-processing algorithms, such as standard normal variate 

(SNV) and successive projection algorithm (SPA) methods, to the raw Raman 

spectra data to enhance the calibration model for predicting specific phase content 

in the sample. Statistical assessment parameters, such as coefficient of 
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determination (R2), root mean standard error in calibration (RMSEC), root mean 

standard error in cross-validation (RMSECV), and root mean square error of 

prediction (RMSEP), were used to check the suitability of the calibration model. 

Furthermore, the range error ratio (RER) and the ratio of prediction to deviation 

(RPD) were used to verify the calibration model performance in predicting the 

constituents in the sample concentration.  

 All these statistical assessment parameters provided very satisfactory results 

which demonstrate that the calibration model was fit for purpose in this study. 

Based on the use of experimentally prepared synthetic inclusions phases used in 

the study, three potential routes associated with the evolution and formation of 

inclusions for Al-killed calcium treated steel were investigated: firstly, the 

modification process for fully or partially liquid inclusions of calcium aluminates, 

such as CA, C12A7 and C3A; secondly, calcium aluminates combined with CaS or 

MgO.Al2O3, and, finally, the existence of CaS, MgO.Al2O3 and calcium aluminates 

(C12A7, CA and C3A) in a sample matrix. 

The study identified the following Raman band (shift) regions to be the most 

suitable for estimating the specific phase present in multiphase (binary and ternary) 

mixtures of CaO–Al2O3, (CaO–Al2O3)–MgO.Al2O3 (MA) and (CaO–Al2O3)–

MgO.Al2O3–CaS system: 

– C12A7: Intense Raman band at 517–522 cm-1, medium Raman band within 

776–781 cm-1 or at 314 cm-1. 

– C3A: Intense Raman band within 756–766 cm-1, medium Raman band at 508 

cm-1. 

– CA: Intense Raman band within 522–530 cm-1 and medium Raman band at 

545–549 cm-1.  

– CaS: Intense Raman band within 156–160 cm-1.  

– MgO.Al2O3 (MA): Intense Raman band within 410–420 cm-1.   

The accuracy for estimating the individual phase content (CA, C12A7, C3A, 

MgO.Al2O3 and CaS), contained in the samples were assessed based on weight 

percent (wt%) deviations. The mean absolute error (MAE) values (in wt%), for a 

specific phase present in the sample based on the systems studied (binary and 

ternary), are presented as: 

A. Calcium aluminate (CaO–Al2O3) system  

– C12A7 (2.74), CA (2.61) and C3A (2.86) 
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B. (CaO–Al2O3)–MgO.Al2O3 system 

– Binary: MA (0.14), C12A7 (0.08), CA (0.14) and C3A (0.13) Al2O3 (0.19) 

– Ternary: MA (2.58), C12A7 (3.32), CA (3.03) and C3A (3.08) 

C. (CaO–Al2O3)–MgO.Al2O3–CaS system 

– Binary; CaS (0.21), MA (0.16), C12A7 (0.38), CA (0.13) and C3A (0.17), 

and Al2O3 (0.21). 

– Ternary; MA (3.78), CaS (3.60), C12A7 (2.51), CA (4.40) and C3A (3.44). 

5.2 Future work 

Vibrational spectroscopy like Raman spectroscopy has some features such as 

relatively non-destructive, easy sample preparation and fast result acquisition as 

some merits in its application as an analytical technique. Additionally, the steel 

matrix is Raman inactive, making Raman signals obtained from steel samples 

considered to be associated with inclusion within the steel matrix. Consequently, 

these features make Raman spectroscopy a potential analytical instrument for non-

metallic inclusion characterisation in steel samples.  

Future work should, therefore, consider the application of Raman spectroscopy 

a step further to characterise laboratory or industrial steel samples since the 

synthetic inclusions used in this study have shown themselves to be identifiable 

and distinguishable from each other using this instrumental technique.  

Additionally, the prospect of using Raman spectroscopy as potential online 

studies for inclusions should be studied. However, experimental measurements 

should first be conducted on these synthetic inclusions at a higher temperature. This 

will assist in determining any possible thermal, or background effects on the Raman 

signals from the samples measured since all the Raman spectroscopy measurements 

for this current were done at ambient temperature.    
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