
50 Int. J. Sensor Networks, Vol. 14, No. 1, 2013

Copyright © 2013 Inderscience Enterprises Ltd.

Plug-and-play mechanism for plain transducers
with wired digital interfaces attached to wireless
sensor network nodes

Konstantin Mikhaylov*, Tomi Pitkäaho and
Jouni Tervonen
RFMedia Laboratory,
Oulu Southern Institute,
University of Oulu,
Vierimaantie 5, 84100, Ylivieska, Finland
Email: konstantin.mikhaylov@oulu.fi
Email: tomi.pitkaaho@oulu.fi
Email: jouni.tervonen@oulu.fi
*Corresponding author

Abstract: The ability to connect sensors to the Wireless Sensor Network (WSN) nodes without
the need for physical device configuration has many advantages: application development is
simplified, network deployment and service is easier, and sensors can be swapped or added on-
the-fly. The existing solution for sensor Plug-and-Play (P&P) for WSN nodes is the IEEE 1451
set of standards developed for smart transducers. The serious drawback of this solution is that it
cannot be used with the most widespread plain transducers without adding multiple external
components. Therefore, in this paper, we introduce a novel mechanism that allows implementation
of P&P connection to WSN nodes for commercially available off-the-shelf sensors with the
most widespread wired plain digital interfaces (SPI, I2C, 1-wire etc.) without any single external
component utilisation.

Keywords: plug-and-play mechanism; wireless sensor networks; plain transducers with wired
digital interfaces; sensor identification; sensor discovery; digital sensor; WSN; P&P; I2C;
SPI; 1-wire.

Reference to this paper should be made as follows: Mikhaylov, K., Pitkäaho, T. and Tervonen, J.
(2013) ‘Plug-and-play mechanism for plain transducers with wired digital interfaces attached to
wireless sensor network nodes’, Int. J. Sensor Networks, Vol. 14, No. 1, pp.50–63.

Biographical notes: Konstantin Mikhaylov has been working as a Researcher for Wireless and
Embedded Systems since 2008 at the RFMedia Laboratory of Oulu Southern Institute, the
University of Oulu, Ylivieska, Finland. He received his BSc (2006) and MSc (2008) in Electrical
Engineering, with the focus on wireless systems, from St. Petersburg State Polytechnical
University, St. Petersburg, Russian Federation. His main research interests include embedded
systems, non-specific short range wireless communication technologies and wireless sensor
networks, especially the problems of energy efficiency, available resources estimation and
hardware-resources aware operation adaptation for those systems.

Tomi Pitkäaho received the MSc degree in Information Processing Science from the University
of Oulu, Finland, in 2008. He worked as a Research Assistant from 2006 to 2008 and as a
Researcher from 2008 to 2010 in Wireless Data Transmission research group in the RFMedia
Laboratory of Oulu Southern Institute, University of Oulu. From 2010 to 2011 he worked as a
Project Researcher and since 2011 as a Project Manager in the Digital Holography research group
in the RFMedia Laboratory. His current research interests include digital holography, digital
holographic microscopy, image processing, 3D image processing, and digital hologram image
processing.

Jouni Tervonen has been working as the Research Manager with Oulu Southern Institute, the
University of Oulu, since 2004. He received his Dipl Eng (MSc) and DSc (Tech) in Electrical
Engineering from the Helsinki University of Technology, Espoo, Finland in 1992 and 1997,
respectively. He is in charge of the Wireless Data Transmission and Digital Media Groups of
Oulu Southern Institute at the RFMedia Laboratory in Ylivieska, Finland. Currently, his main
research interests are wireless sensor networks, embedded systems, and applications of emerging
4G telecommunication standards.

 Plug-and-play mechanism for plain transducers 51

1 Introduction

The technological advances that have occurred during recent
years have extended the range of the parameters that can
be measured using existing transducers. Today’s sensor
technologies combine high precision, fast operation, and low
energy consumption within relatively small casings, which
has made possible the rapid development and dissemination
of various Distributed Measurement and Control (DMC)
applications. As revealed in the work of Akyildiz et al.
(2002), Bertocco et al. (2008), Chee-Yee and Kumar (2003)
and Yunseop et al. (2008) the use of wireless communication
between the sensor nodes reduces installation and maintenance
costs and provides high levels of network scalability and
flexibility, making Wireless Sensor Networks (WSNs) one of
the key technologies for the future. As shown in the work
of Akyildiz et al. (2002), Akyildiz and Xudong (2005) and
Yunseop et al. (2008), contemporary WSNs are often
implemented as mesh networks with dynamic self-organisation
and self-configuration, which simplifies DMC application
deployment and service.

At the core of a WSN node are the actual sensors (see
Figure 1) that make the WSN meaningful. However connecting
these general sensors usually requires modifications to the
node’s hardware, or at least to the node’s software, which
makes the nodes application-dependent. Connection of
different sensors without device modifications now relies on
a Plug-and-Play (P&P) approach that has been standardised
as part of the Institute of Electrical and Electronics Engineers
(IEEE) IEEE-1451 set of standards for intelligent smart
sensors interfaces (Gilsinn and Lee, 2001; IEEE Std. 1451.0,
2007; IEEE Std. 21 450, 2010; Lee et al., 2004; Wobschall,
2008). The availability of sensor P&P (according to
Gumudavelli et al. (2010), a sensor can be considered P&P if
it becomes operational and networked after turned on and is
physically connected to a WSN node’s microcontroller)
provides several significant benefits for WSNs, such as:

• simplified application development, device manufacturing,
WSN deployment, and service (when manufactured, a
WSN node does not require any sensor-specific software
– it can be obtained, e.g. from the WSN once node is
switched on and its sensors are identified);

• deployed WSN nodes can be upgraded or dynamically
reassigned for new tasks by changing the sensors;

• sensors that disconnect for unexpected reasons from a
WSN node can be automatically taken out of use.

The general concept of a smart transducer, developed in the
late 1980s, is that it is a device that combines both a sensing
system and a local microcontroller with required interface
circuitry, processor, memory, and a circuitry for implementing
network communication (Song and Lee, 2008a). According to
Lee and Song (2005) and Song and Lee (2008b), the smart
transducers also implement system level functions (e.g.

measurement compensation, automatic calibration, self-
diagnosis) and networking communication functions such as
node identification and node loss detection. The IEEE 1451
set of standards defines a common communication interface
for connecting these types of smart transducers to digital
systems and instruments in network-independent environments.
The standard also defines the hardware interfaces for connecting
transducers to a microcontroller or to an instrumentation
system, and the set of software interfaces for connecting
transducers to a network (Lee and Song, 2005; Potter,
2002). One of the IEEE 1451 key elements is the definition
of the Transducer Electronic Data Sheet (TEDS) format.
The TEDS are the memory blocks that are embedded into
each sensor (see Figure 2) and contain information about the
sensor’s manufacturer, model, serial number, measurement
range, sensitivity, and various calibration information, all of
which can be used in sensor self-identification and self-
description as discussed in the work of Potter (2002) and
Ross et al. (2009).

Figure 1 Structure of a common WSN node

Figure 2 TEDS mechanism in IEEE 1451

Sensor P&P for WSN nodes using the IEEE 1451 can be
implemented in two ways. The actual sensors can be wirelessly

52 K. Mikhaylov, T. Pitkäaho and J. Tervonen

connected using IEEE 1451.5 or .7 Transducer Interface
Modules (TIMs) to the Network Capable Application
Processor (NCAP), which will provide further connection to
the core WSN (Figure 3(a)). Alternatively, Gilsinn and Lee
(2001) and Wobschall (2008) suggested, multiple sensors can
be connected over IEEE 1451.1-4 or .6 wired interfaces to the
NCAP, which is connected to the WSN (Figure 3(b)). Both of
these solutions need to use IEEE 1451 TIMs between the
actual sensors and the WSN node (NCAP in this case).
Provision of the minimum required functionality requires that
these TIMs contain a memory chip for storing the TEDS, an
appropriate multiplexing circuitry for separating the TEDS and
the transducer data, and a required communication interface
controller (e.g. for IEEE 1451.1-1451.7 physical (PHY) layers)
(see Figure 2). An implementation of additional IEEE 1451
features often requires the use of a separate microcontroller or a
processor on the TIM (consider, e.g. Lee et al. (2004) and Ross
et al. (2009)). Needless to say, these can significantly increase
the price and power consumption of the resulting P&P sensors,
which is especially undesirable for WSN.

Although today’s WSNs and even a single WSN node
can have substantial intelligence, the majority of the sensors
that are currently used on WSN nodes are still very simple
devices that do not support any smart features (see Figure 1
for typical structure of a WSN node) (Ovalle et al., 2010).
The use of these simple sensors allows reduction in the cost
and power consumption of the WSN nodes, which is
important due to restricted resource availability of many
WSN applications. Nonetheless, as noticed in the work of
Kuorilehto et al. (2007) and Dunbar (2001), the absence
of smart features within these sensors restricts the
implementation of P&P sensor connections to a WSN node.

The IEEE 1451 cannot be used with plain transducers
without significant hardware modification and use of new
components. Therefore, in this paper, we introduce a novel
P&P mechanism intended for the Commercially available
Off-The-Shelf (COTS) sensors with the most widespread
(according to Yurish, 2012 and Avnet, 2012) plain wired
digital interfaces (namely – Serial Peripheral Interface
(SPI), Inter-Integrated Circuit (I2C) interface, 1-wire and
proprietary ones) connected to a WSN node. The suggested
P&P mechanism is not based on the smart sensor concept
and this allows us to dispense with all of the components
between the sensor and the WSN node (compared, e.g. to
Figure 3(b)); thus, it reduces the price and increases the
applicability of the solution. The developed mechanism uses
currently existing WSN node resources, and the resources
within a WSN to implement a P&P support for the sensors.
The introduced mechanism can be used as a less expensive
and simpler alternative to the IEEE 1451 for implementing
the sensor P&P connection to WSN nodes. In this paper,
specifics of communication in WSN are not addressed
and the WSN nodes are assumed to have the required
mechanisms already in place for secure and reliable data
transmission within the network.

Figure 3 Wireless transducer plug-and-play implementation for
WSNs using IEEE 1451, (a) Wireless P&P sensor
connection to a NCAP (over IEEE 1451.5 or .7
interfaces) with a wireless interface between the NCAP
and the core WSN (b) Wired P&P sensor connection to
a NCAP (over IEEE 1451.1-4 or .6 interfaces) with a
wireless interface between the NCAP and the core
WSN

(a)

(b)

The remainder of the article is organised as follows: Section 2
describes the suggested P&P mechanism, including the
mechanisms for detection of sensor connection/disconnection

 Plug-and-play mechanism for plain transducers 53

to/from a WSN node, sensor identification, and retrieval of
P&P support data from WSN. Section 3 presents the results of
the P&P mechanism implementation and a real-life evaluation.
Section 4 concludes the paper and summarises the results.

2 Suggested sensor plug-and-play mechanism
for WSN

The suggested sensor P&P mechanism for plain sensors
connected to a WSN node includes four major operation
stages:

1 Detection of sensor connection and disconnection;

2 Identification (ID) data retrieval from WSN;

3 ID of connected sensor(s);

4 Software driver retrieval for the identified sensors from
a WSN.

Therefore, its implementation requires the three following
mechanisms:

A Sensor connection/disconnection detection;

B Connected sensor identification;

C Mechanism for retrieval of the required data from the
WSN (both the ID data and the microcontroller program
code to be used with the new sensors (sensor driver)).

2.1 Sensor connection/disconnection detection
Smart sensors can announce their connection to a WSN
node’s microcontroller, whereas plain sensors usually do
not have this capability. The main reason for this is that the
plain sensors with digital interfaces are implemented as
slave devices for appropriate buses (e.g. SPI, I2C) (see NXP
Semiconductors (2007) and Motorola Semiconductor
(2003)). This requires that all of the communication with
these devices must be initialised by the master device (for
WSNs nodes, this will be a microcontroller or other
controlling device of the WSN node (see Figure 1)).
Therefore, an external mechanism is needed to inform the
WSN node’s microcontroller that its peripherals have been
changed. We suggest using the following four mechanisms
for the sensor connection/disconnection detection by WSN
node:

1 External signal;

2 Radio command;

3 Periodic identification launching of connected devices;

4 New device connection detection using the WSN
node’s power consumption monitoring.

The external signal usage assumes that when a sensor is
connected or disconnected, this is the result of an intentional
external impact. During this impact, the controls of the node
could also be accessed, which can be used to inform the
node about a sensor change. This can be implemented, e.g.

• by equipping the sensor node with a button or switch
that will be activated each time the sensor is changed;

• by rebooting the sensor node (the sensor discovery
should be launched automatically after each reboot)

• by using a special design of P&P sensor interface
(e.g. it can include a wire that will be connected on the
sensor board to the ground or the power supply line
thus signalising that the sensor has been attached).

Another possibility for WSN nodes is to use a radio
command to inform the node that its peripherals have been
changed. In this case, after service operations that involve
sensor changes, the node should receive a radio command
that will trigger the sensor identification procedure.
This command can be issued by the network access point or
by the special nodes that are used during the service
operations.

The third option is a periodic launch of the device
identification subroutine. A disadvantage of this method is
its overhead processing due to inability to get actual
information about the new sensor connection to the WSN
node. This method also can cause significant delays
between the actual sensor connection and detection and
initiation of a new device.

The fourth option is sensor connection detection based
on the power consumption of the WSN node. Clearly,
the addition or removal of a sensor also influences the
overall node power consumption. The main difficulty in
implementing this method is that many sensors, whenever
they are not in use, switch automatically to a low-power
mode with very low power consumption and thus become
difficult to detect.

In the real system, combination of several of these
sensor connection detection methods is possible, depending
on the required characteristics and available resources.

The detection of a disconnection of a digital sensor is
straightforward – if for some reason one of the sensors
gets disconnected from the WSN node, the node will not get
a reply from this sensor while trying to communicate
with it.

2.2 Connected sensors identification

Once the WSN node’s microcontroller recognises the
presence of new sensors, it should identify them. According
to Avnet (2012), the most widespread digital interfaces (e.g.
for temperature sensors) are I2C (57% of devices), SPI
(10%), and 1-wire (6%) devices; the rest of the sensors
utilise company-specific digital interfaces. Unfortunately, of
the most widely utilised sensor digital interfaces, only the 1-
wire interface has a mechanism for a single-valued sensor
identification (see e.g. Maxim Integrated Products, 2002).
Among the rest interfaces, only the I2C has some support for
sensor identification based on the sensor’s 7-bit address
(suggested by Ptasinski and Sassi (2002)). However,
the single-valued identification using the (suggested by
Ptasinski and Sassi (2002)) mechanism is impossible

54 K. Mikhaylov, T. Pitkäaho and J. Tervonen

because the addresses for I2C sensors are not unique and
multiple I2C sensors can use same address (NXP
Semiconductors, 2007) (see Appendix A for an example).
The other interfaces, such as SPI or the majority of the
company-specific ones, have no identification mechanism
available at all (Motorola Semiconductor, 2003).

Our suggested solution is to use the existing features of
plain digital interfaces (e.g. the address mechanism
available for I2C devices) and the features of the sensors
themselves (e.g. the data within the sensor’s registers). This
solution can be implemented by using a simple table-based
trial-and-error algorithm, which is executed by the WSN
node’s microcontroller to which the sensors are connected
(see Figure 1). The suggested algorithm (see Figure 4)
utilises a prefilled ID table – the table containing unique ID
request and expected ID reply data for each sensor, which
can be potentially connected to a WSN node. Depending on
the P&P sensor specifics, as ID request can be used a single
command or a set of commands sending which to the P&P
sensor of this type will generate the specific unique ID
reply. By going through this ID table (see Figure 4), sending
the specified ID requests and comparing the obtained P&P
sensor’s replies with the expected ones, a WSN node’s
microcontroller detects which of the sensors in the ID table
are attached to it. At the ID stage, a WSN node’s
microcontroller does not need to have a complete driver for
controlling a new sensor; instead it uses only a minimum set
of commands that are required to obtain the reply from a
sensor, which significantly limits the memory consumption
for the ID algorithm. As already discussed, some plain
digital interfaces do not have standard ID mechanisms and
the devices do not include special ID information —
for identification of these, we suggest using for ID request
one or combination of several of the following four
methods:

1 Read from the ID registers or any other registers that
contain known-in-advance data (this device identification
is based on the facts of hardware connection settings
correctness, register/command existence, and retrieved
data correctness).

2 Sequentially write to and read from a register with
inaccessible bits (bits containing a value which cannot
be changed) (device identification is based on the facts
of hardware connection settings correctness, register
existence, and inaccessible bit locations).

3 Execute a command for which the range of possible
return values is known (e.g. make a temperature
measurement) (device identification is based on the
facts of hardware connection settings correctness,
command execution acknowledgement, and returned
data falling within known limits).

4 Sequentially write to and read from certain registers or
certain command execution (device identification is
based only on the facts of hardware connection setting
correctness and register existence/command execution
acknowledgement).

Figure 4 Suggested sensor identification algorithm based on an
ID table tryout (assuming that only a single sensor can
be connected to an interface) (see online version for
colours)

The suggested mechanism assumes that each plain P&P
sensor has a unique ID request-response sequence that can
be constructed using four suggested above methods.
Although the validity of this assumption for all of the
available sensors is impossible to confirm, the material
presented in Section 3 shows that the probability of two
sensors having exactly same data in the same registers is
rather low. However, in the case where two or more sensors
do have absolutely the same data in all of the registers, the
identification of these would not be possible using the
suggested method. In that case, the identification data for
the next stage (i.e. the driver retrieval) can be provided
either manually (e.g. by sending the special radio packet
containing the ID for attached sensor) or by using more
complicated techniques (e.g. by trying out the drivers for all
identical sensors and comparing the obtained value with the
data from sensors of the same type on near-by WSN nodes).

The required ID information and the connection features
for implementing sensor P&P over the most widespread
digital sensor interfaces are presented in Tables 1 and 2,
respectively.

 Plug-and-play mechanism for plain transducers 55

Table 1 Required ID information for devices with I2C, SPI,
1-wire and proprietary digital buses

Data I2C device SPI device 1-wire
device

Device with
proprietary bus

Clock required required not required required

Addresses requireda not required required depend on bus
ID request:
send data required required requiredb required
delays required required required required
service
operations not required not required not required required

ID response required required not requiredbrequired

Notes: aCan have several different addresses depending
on connection.

 bUses only the fact of response, thus only one
command that generates a response is required,
the actual response data are not important.

2.3 ID data and driver storage and retrieval
As well known (Kuorilehto et al., 2007; Mohammadi and
Jadidoleslamy, 2011; Rajkamal and Ranjan, 2011), WSN
nodes often have rather limited resources. Among these is the
available memory, which complicates storage of the ID
information and the program code for working with all
potentially attachable sensors on each WSN node. Luckily, the
networking capability of a WSN can be used to solve this
problem. We suggest keeping only the program code for the
actual connected sensors on the WSN node during normal
operation, while the required ID data and the software drivers
for potentially connectable sensors are stored elsewhere in the
network ‘resource centre’ (RC). The main function of a RC is
to provide the necessary ID data and the software drivers, by
request (see Figure 5), to the end-device (ED) WSN nodes. A
network access point (AP) or a separate node can be used as a
RC (e.g. RC1 on Figure 5). As one of the options, the data for
P&P implementation can be stored on remote location (e.g. on
the internet) and the RC can act as an access point to
this remote location using the appropriate communication

technologies (e.g. RC2 on Figure 5). The network can have

several RCs, but in this case, an appropriate access mechanism
should be implemented. If a WSN node is not capable of
storing the entire ID table, the table can be divided in several
parts that the ED will sequentially download from the RC and
go through. These solutions allow to handle the problem of ID
table scalability. Updated versions of the ID table and the sensor
drivers for EDs are also provided by the RC nodes. Needless to
say, prior to connection of any new P&P sensor to a WSN
node, the ID information for it should be included in ID table.

Table 2 P&P properties for devices using I2C, SPI, 1-wire and
proprietary digital buses

Data I2C device SPI device 1-wire
device

Device with
proprietary bus

Physical
connectionaspecified specified specified depend

on bus
Number of
physical
lines

2(2)b 2(2) b + 1 per
device 1(2) b depend

on bus

Possible
sensor ID
methodsc

-physical
connection
-address
-unique
request/reply

-physical
connection
-unique
request/reply

-physical
connection
-unique
address

-depend
on bus

Sensor
connection
detection
method

see II-A see II-A +
using CS line see II-A depend

on bus

Notes: a Sensor connection (pinout) is predefined

 b N (M) where N – number of communication
lines, M – number of supply lines

 c For factors used for device identification, see
Section 2.2

The implementation of the suggested approach obviously
requires capability for secure and reliable data transmission
between and ED and RC. In the current paper, we set aside
the implementation of this and assume that it is already
provided by the WSN (see e.g. Yi et al. (2007) and
Yun et al. (2008)) through utilisation of error-detecting,
error correcting and packet retransmission mechanisms.

Figure 5 The structure of a WSN with on-node sensor P&P (ED – end device, AP – access point, RC – resource centre)

56 K. Mikhaylov, T. Pitkäaho and J. Tervonen

3 Implementation and evaluation for the
developed sensor plug-and-play method

The suggested plain sensor P&P mechanism was evaluated in
two phases. First, the features of the currently existing plain
digital sensors were analysed and the suggested sensor
identification algorithm operation was simulated based on the
information of 48 existing I2C devices. For the second phase,
the suggested mechanisms were implemented and evaluated
with hardware using several existing I2C sensors and WSN

During the first phase of evaluation, we randomly chose
48 different real-life I2C devices (of these, 42 were sensors
and six were other devices). Based on the information
provided in the device datasheets, we manually generated an
ID table that could be used to distinguish these devices
using the suggested ID algorithm (the ID table and the list
of the tested devices can be found in the Appendix A).
In addition, the further analysis of the device datasheets
revealed that an ‘averaged’ I2C device uses five different
I2C bus addresses and has 35 bytes of data in its registers, of
which six bytes contain (after reset) either non-zero
information or have some inaccessible bits.

For estimating the applicability of the suggested solution,
we have calculated the probability for two devices having at
least one matching I2C address and the same data in all non-
zero registers (assuming that non-zero register addresses and
data are random), which would make the suggested sensor ID
mechanism inapplicable (see equation (1)).

1

0

1

8
0

1 1
2 -1

addr

bytesbytes

n -
addr addr

match
k= addr

nn -

k= bytes

N - n - k
P = 1-

N - k

× ×
N - k

⎛ ⎞
⎜ ⎟
⎝ ⎠
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

∏

∏
 (1)

In equation (1), the Naddr is the overall number of possible
device addresses (e.g. 112 for I2C bus, one for SPI), naddr – is
the number of addresses one device can use (e.g. five for
‘average’ I2C device, one for SPI), Nbytes is the overall
number of registers on a device, and nbytes is the number of
non-zero registers on a device after reset. The resulting curves,
showing the probability of the existence of two devices that
cannot be identified using the suggested ID algorithm for I2C
and SPI interfaces with different numbers of registers on the
device, are presented in Figure 6. As shown in Figure 6, when
the devices have at least two non-zero registers (which is true
for more than 95% of the examined sensors), the probability of
having two identical devices becomes lower than 10–5 and for
an ‘averaged’ I2C device with five non-zero registers out of 32
registers, this probability reaches 10–23.

The ID table reveals (see the Appendix A) that, among the
examined devices, only three (and of these, only one sensor)
have no non-zero registers or registers with inaccessible bits at
all after reset. Nonetheless, the suggested ID algorithm appears
to be applicable even for these devices – these devices have
been identified by writing some data to their registers and
reading it back (the other examined devices with matching I2C
addresses are unable to do this). In addition, three pairs of the
examined devices appeared to have identical data in their
registers. All of these devices were different modifications of
the same sensor and had almost the same functionality and an
identical set of commands. However, even these devices can be
distinguished at a later stage by a proper driver implementation
(the identification can be done using the returned measurement
data – e.g. for LSM320DL registers, 0x2A and 0x2B do not
contain measurement data as they have only a 2D gyroscope,
while for LSM330DL, some data will be present as it
encapsulates a 3D gyroscope).

Figure 6 Probability for two devices not distinguishable by the suggested P&P mechanism

 Plug-and-play mechanism for plain transducers 57

We estimated the complexity and evaluated the suggested
sensor P&P mechanism in real-life during the second phase
by realising a hardware implementation. For this, we used
Texas Instruments’ (TI) EZ430-RF2500 (Texas Instruments,
2009) development boards, which have an on-board
MSP430F2274 16-bit microcontroller (Texas Instruments,
2010) and a CC2500 2.4 GHz radio (Texas Instruments,
2011). The suggested P&P mechanism was implemented
in full (i.e. the mechanisms for detection of I2C device
connection, retrieval of ID data from a resource centre,
identification of the connected I2C device and software
driver retrieval were realised – see Figure 7 for the WSN
node operation algorithm) for three plain I2C devices, using
the REBOS (Mikhaylov and Tervonen, 2011) operation
system on the WSN node microcontrollers. The tested boards
with P&P I2C devices were directly connected to a
microcontroller of the WSN through simple 4-pin connector
(see Figure 8(a)) using 4 cm long wires without using any
external components. We implemented connection detection
of a new I2C device by the WSN node by using the first two
suggested options in Section 2.1 and the connected device
was identified using the first of suggested methods in
Section 2.2. Both the required ID information (i.e. the ID
table) and the drivers during the test were stored on a special
node (RC1 on Figure 8(b)) and access to it was implemented
using an over-the-air reprogramming mechanism suggested in
the work of Mikhaylov and Tervonen (2010) (before
connecting to the WSN, the ED nodes had no ID data or
sensor drivers at all). Since the main focal point of hardware
evaluation was real-life testing of the suggested discovery,
ID, and data retrieval mechanisms, we used a simple WSN
with a single-hop star network topology (see Figure 8(b))
and a Carrier Sense Multiple Access with Collision
Avoidance (CSMA/CA) mechanism for wireless channel
access in our tests. In the implemented WSN, the RC1 node
acted as both the resource centre for the suggested P&P
mechanism and the access point to the WSN network. The
task of the laptop connected to the RC1 was to monitor the
network operation and to update the ID and driver data on
the RC, if required. We ensured an errorless ID table and
driver retrieval by the WSN nodes by implementing a two-
stage error detection mechanism (a Cyclic Redundancy
Check (CRC) for the received packet using a radio and
checksum control by a microcontroller) with full packet
retransmission in the case of error at any stage.

As shown in Tables 3 and 4, the implementation of the
suggested P&P mechanism resulted in rather moderate
resource consumption. As revealed in Table 3, the overall
size of the code, which realises the suggested P&P
mechanism in full (including the microcontroller’s
Operation System (OS) and the code for networking within
WSN), is slightly above 10 kbytes (around 30% of the
memory available on the microcontroller) and is not
dependent of the number of possible I2C devices in the ID
table. The overall size of the ID table for the three I2C
devices used was 42 bytes (see the Table 4; an additional
five bytes were required for the table header). As can be
seen from the Table 4, the average size of the ID data for a

single I2C device is around 13 bytes, while for the
‘averaged’ I2C sensor discussed above (a device with five
possible addresses and six non-zero registers) the size of the
ID data would reach 30 bytes for the worst case scenario,
which allows storage of the ID table on a WSN node
(using Mikhaylov and Tervonen’s approach (2010))
simultaneously for at least 600 I2C sensors. The size of
sensor drivers – the microcontroller specific code that
implements the minimum required I2C sensor functionality
(calibrates the sensor, orders it to make the measurement,
processes the measurement, converts it to International
System of Units (SI) and forwards the data to the
application layer) – was 165 bytes for the TI TMP102, 179
bytes for the ST MPR121, and 233 bytes for the ST
STMPE801.

Figure 7 Algorithm for the WSN node (ED) operation during
P&P hardware testing

The effect of the suggested P&P mechanism on the WSN
node operation is shown by the values for energy and time
consumption, as well as the inbound and outbound data
traffic during different stages for the execution of the sensor
P&P mechanism are presented in Table 5 and Figure 9.
These measurements represent the case when the WSN
node microcontroller was running at a 1 MHz clock
frequency with a power supply of 3.6 V and no errors
occurred in the radio communication. The data in Table 5
are presented for the two contrasting scenarios: when the
ED has just started and requires to download both the ID
table and the drivers from RC (e.g. a new device attached to
WSN); and for the opposite case, when the ED already had
the latest versions of the ID data and required drivers
(e.g. one of the sensors on the attached node has been
removed).

58 K. Mikhaylov, T. Pitkäaho and J. Tervonen

Figure 8 I2C Testbed, (a) Schematics of connection for a P&P
I2C plain sensor to a WSN node (b) Topology of the
network used for testing the suggested P&P mechanism

(a)

(b)

Table 3 WSN node microcontroller code and RAM consumption
for suggested P&P algorithm implementation

Program stage ED Code
size, bytes

ED RAM
sizeb, bytes

RC Code
size, bytes

RC RAM
sizeb, bytes

OS core + required
driversa 4676 160 3850 129

ID table request
/response 1912 8 2294c 5

Connection
detection and ID 1872 6 – –

Driver
request/response 1852 9 2294c 5

Normal work 550 6 – –

Notes: a ID data and device drivers not included, their
size can be found in Table 4

 b Temporary allocated memory from stack not
included

 c ID and driver request processing has been
implemented as single function, full function
size is calculated.

Table 4 Structure and size of ID data and drivers (in bytes)
for tested I2C devices

Required data TI TMP102 ST MPR121 ST MPE801
Device ID 1 1 1
ID Data length 1 1 1
Clock 1 1 1
I2C Addresses (overall) 3 5 5

Number of I2C addresses 1 1 1
Possible I2C addresses 2 4 4

ID request (overall) 2 2 2
Data length 1 1 1
Data 1 1 1

ID response (overall) 4 3 4
Data length 1 1 1
Data 3 2 3

Overall ID data size 12 13 14
Overall driver size:a 165 179 233

Note: aDeveloped drivers provide the minimum
required functionality.

Figure 9 Energy and time consumption distribution between different operations for ED with different sensors (both ID data and device
drivers were downloaded from RC)

 Plug-and-play mechanism for plain transducers 59

Table 5 Time and energy consumption and amount of radio
traffic for implemented I2C sensor P&P during
different stages

Required resources TI TMP102 ST MPR121 ST MPE801
Initialisation:
Required time, ms 3.9 3.9 3.9
Power consumption, µJ 33.6 25.1 25.1
ID table request:
Data transmitted,
bytes

23/5a,c

(7/1)b,c
23/5a,c

(7/1)b,c
23/5a,c

(7/1)b,c
Data received,
bytes

68/44a,c

(8/2) b,c
68/44a,c

(8/2) b,c
68/44a,c

(8/2) b,c
Required time,
ms

69.5a

13.5b
69.9a

13.3b
69.7a

13.3b
Power
consumption, µJ

2560a

581.8b
2334.2a

515.1b
2337.5a

515.6b
Devices detection and identification:
Required time, ms 69.6 69.5 69.7
Power consumption, µJ 2093.6 1441 1378.9
Driver request:
Data transmitted,
bytes

53/12 a,c

(8/2) b,c
71/16 a,c

(8/2) b,c
53/12 a,c

 (8/2) b,c
Data received,
bytes

221/165 a,c

(9/3) b,c
309/233 a,c

(9/3) b,c
235/179 a,c

(9/3) b,c
Required
time, ms

143a

14.5b
190a

14.6b
147a

14.6b
Power
consumption, µJ

6635.9a

712.9b
8245.2a

659.1b
6254.3a

652.7b
Overall:
Data transmitted,
bytes

76/17a,c

(15/3)b,c
94/21 a,c

(15/3) b,c
76/17 a,c

(15/3) b,c
Data received,
bytes

289/209 a,c

(17/5) b,c
377/277 a,c

(17/5) b,c
303/223 a,c

(17/5) b,c
Required time,
ms

283a

101.5b
330a

101.5b
283a

98.5b
Power
consumption, µJ

11308a

3425b
12034a

2640b
9970a

2573b

Notes: aDriver and ID data downloading required
 bNo driver or ID data downloading required
 cOverall data including wireless protocol and

service data/actual I2C ID or driver data

4 Discussion and conclusion

The Plug-and-Play connection of sensors to the WSN nodes
allows simplification of the application development,
network deployment and further service procedures, and
provides on-the-fly sensor changing capability. The reported
implementations for sensor P&P connection to the WSN
nodes usually use IEEE 1451 smart sensors, which have
multiple useful features (e.g. self-identification, automatic
calibration, self-diagnosis), but are rather complicated and
thus expensive devices that are not really widespread on the
current market. However, the majority of COTS plain
digital transducers that are widely used on WSN nodes do
not have any mechanisms for single-valued identification.

Therefore, in the current paper, we have suggested a
novel P&P mechanism for COTS plain digital transducers

utilising most widespread wired digital serial interfaces
connected to the WSN nodes. The suggested mechanism is
a complete solution for sensor P&P and allows the WSN
nodes:

• to detect the connection of a new sensor;

• to retrieve the required data for sensor identification
from the WSN;

• to identify the connected sensors (using a simple table-
based try-out algorithm and the specifics of sensors’
architecture);

• to retrieve the software code for using the identified
sensor from the WSN.

The suggested P&P mechanism is not limited to any
specific physical, data link, network or transport layers
protocols of WSN and can be used with any protocol that
ensures reliable transmission of P&P data in a WSN. Also,
the suggested P&P mechanism involves the transmission of
the service data only once the node with P&P sensor is
attached to the WSN or once the sensors of the node are
changed. This allows us to expect that, if the sensor changes
will not happen too often, the suggested P&P mechanism
will not have negative influence on the data traffic in the
WSN.

The major advantage of the suggested mechanism is that
it uses the resources of the already existing WSN node
processing devices and the resources available in the WSN,
which allows implementation of the suggested P&P
mechanism with COTS plain digital sensors, and without a
single external component. This is especially important for
the WSNs with restricted resources. The major disadvantage
of the suggested method, which is a consequence of the
external component usage refusal, is that it is not always
applicable for the simple sensors that do not have any data
in their registers. Nonetheless, as has been shown during the
evaluation phase, the number of these sensors is sufficiently
small. Other significant disadvantages, which are consequences
of the sensor identification approach used, are following:
the ID table should include information about all of the
sensors that can be connected to a WSN node at any time.
For the current implementation, the size of data in ID table
for each sensor is around 14 bytes. The amount of data
traffic in the WSN and the time required for sensor
identification increases linearly with the number of P&P
sensors that can potentially be connected to the WSN nodes.
Nonetheless, in many cases, the suggested P&P mechanism
could provide a much less expensive and simpler alternative
to smart sensors and the IEEE 1451 interface.

The simulations and hardware implementation of
the suggested P&P mechanism using Texas Instruments
eZ430-RF2500 boards and different I2C sensors showed that
the suggested mechanism has rather moderate resource
requirements (the suggested P&P algorithm occupied less
than 30% of the available microcontroller’s memory). For
the case of three different I2C devices, the suggested method
is able to provide sensor P&P connection within one third of
a second. The comparison of the suggested mechanism with

60 K. Mikhaylov, T. Pitkäaho and J. Tervonen

the reported implementations of the IEEE 1451 system (see
e.g. Cummins et al. (1998) and Stepanenko et al. (2006))
shows that the suggested mechanism allows reduction of the
required microcontroller code amount by more than 90%,
while at the same time allowing exclusion of additional
components (such as memory blocks for storing TEDS or
additional processing devices for implementing additional
smart features). In addition, the evaluation of the suggested
P&P mechanism showed that it makes the initial WSN node
program independent of the connected sensors – all of the
required sensor drivers are retrieved automatically from the
WSN by the node after start-up and peripheral identification.

Although we focused primarily on the sensors connected
to the WSN nodes, as these are the most often used peripheral
devices, the suggested P&P mechanism can be extended to a
broad range of other peripheral devices that use standard
wired digital buses (e.g. memory chips, ADC/DAC, pin
extenders etc.). Likewise, the suggested mechanisms for device
connection detection and device identification can also be
applied to other embedded processors besides microcontrollers
and other system besides WSNs.

As a further research we are planning to investigate the
influence of proposed P&P mechanism on the power
consumption and data flows within WSN consisting of
multiple nodes for different scenarios and the networking
and scalability issues within the WSN utilising suggested
P&P mechanism.

References
Akyildiz, I., Weilian, S., Sankarasubramaniam, Y. and Cayirci, E.

(2002) ‘A survey on sensor networks’, IEEE Communication
Magazine, Vol. 40, No. 8, pp.102–114.

Akyildiz, I. and Xudong, W. (2005) ‘A survey on wireless mesh
networks’, IEEE Communication Magazine, Vol. 43, No. 9,
pp.S23–S30.

Avnet (2012) Avnet Electronics Marketing Database. Available online
at: http://avnetexpress.avnet.com (accessed on 30 January 2012).

Bertocco, M., Gamba, G., Sona, A. and Vitturi, S. (2008)
‘Experimental characterization of wireless sensor networks for
industrial applications’, IEEE Transactions on Instrumentation
and Measurements, Vol. 57, No. 8, pp.1537–1546.

Chee-Yee, C. and Kumar, S. (2003) ‘Sensor networks: evolution,
opportunities, and challenges’, Proceedings of IEEE, Vol. 91,
No. 8, pp.1247–1256.

Cummins, T., Byrne, E., Brannick, D. and Dempsey, D. (1998) ‘An
IEEE 1451 standard transducer interface chip with 12-b ADC,
two 12-b DACs, 10-kb flash EEPROM, and 8-b microcontroller’,
IEEE Journal of Solid-State Circuits, Vol. 33, pp.2112–2120.

Dunbar, M. (2001) ‘Plug-and-play sensors in wireless networks’,
IEEE Instrumentation and Measurement Magazine, Vol. 11,
pp.19–23.

Gilsinn, J. and Lee, K. (2001) ‘Wireless interfaces for IEEE 1451
sensor networks’, Proceedings of the SFICON 2001, IEEE,
pp.45–50.

Gumudavelli, S., Gurkan, D., Hussain, S. and Wang, R. (2010) ‘A
network management approach for implementing the smart
sensor plug and play’, Proceedings of the SAS 2010, IEEE,
pp.261–264.

IEEE Std. 1451.0 (2007) ‘IEEE standard for a smart transducer
interface for sensors and actuators common functions,
communication protocols, and Transducer Electronic
Data Sheet (TEDS) formats’, IEEE Instrumentation and
Measurement Society Std. IEEE Std 1451.0-2007.

IEEE Std. 21 450 (2010) ‘Information technology smart transducer
interface for sensors and actuators Common functions,
communication protocols, and Transducer Electronic Data
Sheet (TEDS) formats’, IEEE Std. ISO/IEC/IEEE 21 450.

Kuorilehto, M., Kohvakka, M., Suhonen, J., Hamalainen, P.,
Hannikainen, M. and Hamalainen, T. (2007) Ultra-Low Energy
Wireless Sensor Networks in Practice: Theory, Realization and
Deployment, John Wiley & Sons, Hoboken, NJ.

Lee, K., Kim, M., Lee, S. and Lee, H. (2004) ‘IEEE-1451-based
smart module for in-vehicle networking systems of intelligent
vehicles’, IEEE Transactions on Industrial Electronics,
Vol. 51, pp.1150–1158.

Lee, K. and Song, E. (2005) ‘Object-oriented application
framework for IEEE 1451.1 standard’, IEEE Transactions on
Instrumentation and Measurements, Vol. 54, pp.1527–1533.

Maxim Integrated Products (2002) 1-Wire Communication through
Software, Maxim Integrated Products Std. (2002).

Mikhaylov, K. and Tervonen, J. (2010) ‘Improvement of energy
consumption for over-the-air reprogramming in wireless
sensor networks’, Proceedings of the ISWPC 2010, IEEE,
pp.86–92.

Mikhaylov, K. and Tervonen, J. (2011) ‘Energy efficient data
restoring after power-downs for wireless sensor networks
nodes with energy scavenging’, Proceedings of the NTMS
2011, IEEE, pp.1–5.

Mohammadi, S. and Jadidoleslamy, H. (2011) ‘A comparison of
link layer attacks on wireless sensor networks’, International
Journal on Applications of Graph Theory in Wireless Ad Hoc
Networks and Sensor Networks, Vol. 3, No. 1, pp.35–56.

Motorola Semiconductor (2003) SPI Block Guide, Std. 03.06
(2003).

NXP Semiconductors (2007) I2C – Bus Specification and User
Manual, Std. rev.03 (2007).

Ovalle, D., Restrepo, D. and Montoya, A. (2010) ‘Artificial
intelligence for wireless sensor networks enhancement’, in
Chinh, H and Tan, Y. (Eds): Smart Wireless Sensor Networks,
InTech, Rijeka, Croatia.

Potter, D. (2002) ‘Smart plug and play sensors’, IEEE
Instrumentation and Measurement Magazine, Vol. 5, pp.28–30.

Ptasinski, K. and Sassi, J. (2002) ‘Plug and Play I2C Slave’,
Sweden Patent 6 363 437, March 26, 2002.

Rajkamal, R. and Ranjan, P. (2011) ‘A framework of energy
efficient wireless sensor network architecture for continuous
monitoring applications’, European Journal of Scientific
Research, Vol. 61, No. 1, pp.60–67.

Ross, S., de Carvalho, A., Silva, A., Batista, E., Kitano, C.,
Filho, T. and Prado, T. (2009) ‘Open and standardized
resources for smart transducer networking’, IEEE
Transactions on Instrumentation and Measurements, Vol. 58,
pp.3754–3761.

Song, E. and Lee, K. (2008a) ‘Understanding IEEE 1451-
networked smart transducer interface standard – what is a
smart transducer?’, IEEE Instrumentation and Measurement
Magazine, Vol. 11, pp.11–17.

Song, E. and Lee, K. (2008b) ‘Stws: a unified web service for
IEEE 1451 smart transducers’, IEEE Transactions on
Instrumentation and Measurements, Vol. 57, pp.1749–1756.

 Plug-and-play mechanism for plain transducers 61

Stepanenko, A., Lee, K., Kochan, R., Kochan, V. and Sachenko,
A. (2006) ‘Development of a minimal IEEE 1451.1 model for
microcontroller implementation’, Proceedings of the SAS
2006, IEEE, pp.88–93.

Texas Instruments (2009) eZ430-RF2500 Development Tool
user’s guide (SLAU227E), Texas Instruments, Dallas,
Texas, USA.

Texas Instruments (2010) MSP430x22x2/MSP430x22x4 Datasheet
(SLAS504D), Texas Instruments, Dallas, Texas, USA.

Texas Instruments (2011) CC2500 Datasheet (SWRS040C), Texas
Instruments, Dallas, Texas, USA.

Wobschall, D. (2008) ‘Networked sensor monitoring using the
universal IEEE 1451 standard’, IEEE Instrumentation and
Measurement Magazine, Vol. 11, pp.18–22.

Yi, Q., Kejie, L. and Tipper, D. (2007) ‘A design for secure and
survivable wireless sensor networks’, IEEE Transactions on
Wireless Communication, Vol. 14, No. 5, pp.30–37.

Yun, Z., Yuguang, F. and Yanchao, Z. (2008) ‘Securing wireless
sensor networks: a survey’, IEEE Communication Surveys
and Tutorials, Vol. 10, No. 3, pp.6–28.

Yunseop, K., Evans, R. and Iversen, W. (2008) ‘Remote sensing and
control of an irrigation system using a distributed wireless
sensor network’, IEEE Transactions on Instrumentation and
Measurements, Vol. 57, No. 7, pp.1379–1387.

Yurish, S. (2012) Smart Sensor Systems Integration: New
Challenges. Available online at: http://www.iaria.org/
conferences2011/filesICN11/Keynote_SergeyYurish.pdf
(accessed on 30 January 2012).

62 K. Mikhaylov, T. Pitkäaho and J. Tervonen

Appendix A

ID Request
No. Device Device description

Address Request sequence
ID Response Used device

ID method

1 SCP1000 Pressure sensor 0x11 R_0x00NNNN 0x0300 Register
contents

2 VCNL4000 Proximity + light sensor 0x13 R_0x81NN 0x11 Register
contents

3 LM83 Temperature sensor
0x18-0x1A,
0x29-0x2B,
0x4C-0x4E

R_0xFENN;R_0x05NN 0x01;0x7F Register
contents

4 MCP98242 Temperature sensor 0x18-0x1F W_0x01FFFF;R_0xNNNN 0x07FF Inaccessible
bits

5 STTS424E02 Temperature sensor 0x18-0x1F W_0x06;R_0xNNNN;
W_0x07;R_0xNNNN

0x104A;0x0000 or
0x0001

Register
contents

6 LSM303DLH Accelerometer +
magnetometer

0x18,0x19,
0x1E,0x1F R_0x0ANNNNNN 0x0A0B0C Register

contents

7,
8

LSM320
/LSM330DL

Accelerometer +
gyroscope 0x18,0x19 R_0x20NNNNNN 0x070000 Register

contents

9 TS3000B3A Temperature sensor 0x18-0x1F W_0x06;R_0xNNNN;
W_0x07;R_0xNNNN 0x00B3;0x2903 Register

contents

10 SE98 Temperature sensor 0x18-0x1F W_0x06;R_0xNNNN;
W_0x07;R_0xNNNN 0x1131;0xA102 Register

contents

11 MAX6650 Temperature sensor 0x1B, 0x1F,
0x48,0x49 R_0x12NN;R_0x14NN 0x00;0x1F Register

contents

12 MMA8452Q Accelerometer 0x1C,0x1D R_0x0DNN 0x2A Register
contents

13 ADXL345 Accelerometer 0x1D,0x53 R_0x00NN;R_0x2CNN 0xE5;0x0C Register
contents

14 CMR3000 Gyroscope 0x1E,0x1F R_0x00NNNN 0x0X21 Register
contents

15,
16

HMC5843/
HMC5883 Magnetometer 0x1E,0x3D,

0x3C R_0x10NNNNNN 0x483433 Register
contents

17 PCF8575C GPIO extender 0x20-0x27 W_0xXXXX;R_0xNNNN 0xXXXX Register
existence

18 DS3501 Temperature sensor 0x28-0x2B R_0x00NNNNNN 0x400000 Register
contents

19 APDS-9301 Light sensor 0x29,0x39,
0x49 R_0x0ANNNN 0x0500 Register

contents

20 HMC6343 Compass 0x32 R_0x04NNNN 0x1101 Register
contents

21 MAX17043 Fuel gauge 0x36 R_0x0CNNNN 0x971C Register
contents

22 TCM8230 CMOS camera 0x3C R_0x00NNNNNN 0x701040 Register
contents

23 BMA250 Accelerometer 0x38-0x3F R_0x00NNNN 0x0321 Register
contents

24 MAX6633 Temperature sensor 0x40-0x4F R_0x02NNNNNNNN 0x10002800 Register
contents

25 ISL29002 Light sensor 0x40-0x47 W_0xFFXX;R_0xNN 0xXX Register
existence

26 STMPE801 GPIO extender 0x41, 0x44 R_0x00NNNNNN 0x010802 Register
contents

27 TMP102 Temperature sensor 0x48-0x4B R_0x02NNNN 0x60A0 Register
contents

 Plug-and-play mechanism for plain transducers 63

Appendix A (continued)

ID Requests
No. Device Device description

Address Request sequence
ID Response Used device

ID method

28 TMP100 Temperature sensor 0x48-0x4F W_0x01;R_0xNN 0x80 Inaccessible
bits

29 MAX6625 Temperature sensor 0x48-0x4B W_0x00FF;R_0xNN 0x03 Register
contents

30 MAX6642 Temperature sensor 0x48-0x4F R_0x02NNNNNNNN 0x46007800 Register
contents

31 ADT7411 Temperature sensor 0x48, 0x4A,
0x4B R_0x23NNNN 0xC762 Register

contents

32 LM75A/B Temperature sensor 0x48-0x4F W_0x02;R_0xNN;W_0x05;R_0
xNN 0x4B;0x00 Register

contents

33 SE95 Temperature sensor 0x48-0x4F W_0xFE;R_0xNN;W_0x05;R_0
xNN 0x4B;0xA1 Register

contents

34 SA56004X Temperature sensor 0x48-0x4F R_0xFENN;R_0x05NN 0xA1;0x46 Register
contents

35, 36 MCP9801/
TCN75 Temperature sensor 0x48-0x4F W_0x02FFFF;R_0xNNNN 0xFF80 Inaccessible

bits

37 STDS75 Temperature sensor 0x48-0x4F W_0x02;R_0xNNNN;
W_0x03;R_0xNNNN; 0x4800;0x5000 Register

contents

38 AT30TS75 Temperature sensor 0x48-0x4F W_0x12;R_0xNNNN;
W_0x13;R_0xNNNN 0x4B00;0x5000 Register

contents

39 24XX256 EEPROM 0x50-0x57 W_0x001FXX;R_0x001FNN 0xXX Register
existence

40 DS1077 Oscillator 0x58-0x5F R_0x02NNNN 0x1800 Register
contents

41 Si1141 Proximity sensor 0x5A R_0x01NNNN 0x4101 Register
contents

42 Si1142 Proximity sensor 0x5A R_0x01NNNN 0x4102 Register
contents

43 Si1143 Proximity sensor 0x5A R_0x01NNNN 0x4103 Register
contents

44 MPR121 Touch sensor 0x5A-0x5D R_0x5CNNNN 0x1004 Register
contents

45 MPL115A2 Barometer 0x60 R_0x0CNXXXNXXX 0x0NNN0NNN Inaccessible
bits

46 MCP4725 DAC & Memory 0x60-0x67 R_0xNNNNNNNNNN 0x80NNNN0800 Register
contents

47 IMU-3000 Motion sensor 0x68,0x69 R_0x00NN 0x34 Register
contents

48 BMP085 Temperature + pressure
sensor 0x77 R_0xAANNNN 0x20E3 Register

contents

Note: Used designations: 0xXX – some specified data (hex); 0xNN-any data (actual value not important); R_0x01NN – issue
together with address read strobe, after that send byte “0x01” and receive 1 data byte; W_0x07XX issue together with
address write strobe, after that send byte “0x07” and 1 data byte with value “0xXX”.

