
Enabling Modular Plug&Play Wireless Sensor and
Actuator Network Nodes: Software Architecture

Konstantin Mikhaylov and Anton Paatelma
Centre for Wireless Communications

University of Oulu
Oulu, Finland

{konstantin.mikhaylov,anton.paatelma}@ee.oulu.fi

Abstract— The implementation of the Internet of Things
(IoT) concept introduces fundamentally novel challenges not only
at the network level, but also in regards to the design of the
devices. In order to enable easy and effective implementation of
the new IoT devices earlier we have proposed a modular
platform featuring Plug-and-Play (P&P) module connectivity.
The nodes are assembled out of the hardware modules
encapsulating various peripherals, such as power supply and
processing units, transceivers, sensors and actuators, etc. Once a
node is built, all the connected peripherals are identified and the
operation of the node is optimized accordingly. In this work we
present the second component of our solution, i.e. the software
intended to operate on top of the highly dynamic hardware. In
the paper we first discuss the principal challenges and
requirements for such software, then introduce and describe in
details our software architecture, and finally report the initial
results of its implementation. The lessons learned and the major
challenges for the future are summarized in the conclusion.

Keywords—IoT, Wireless Sensors and Actuators Networks,
Modular, Platform, Hardware, Software, Architecture, Design

I. INTRODUCTION
 The recent years have brought to the stage a multitude of
novel sensing, data processing and communication
technologies. These advances lay the basis for further
development of the Internet of Things (IoT) concept and have
twofold effect. On one hand, they enable significant reductions
of cost and energy consumption for the existing devices and
systems. On the other hand, they extend the available elemental
base thus enabling development of the novel applications.
Despite significant positive impact, the latter introduces new
challenges by further increasing diversity of IoT devices and
makes the network landscape even more heterogeneous.

In order to enable fast and easy development of the new
Wireless Sensor and Actuator Network (WSAN) nodes and
IoT devices recently we have first proposed the concept [1] and
then demonstrated a prototype (Fig. 1) [2] of the modular
hardware (HW) platform featuring Plug&Play (P&P) module
connection. The nodes are composed out of the modules
encapsulating the various peripherals, such as power supplies,
processing units, transceivers, sensors and actuators, etc. Once
a node is built, its main processing unit (MPU) identifies all the
connected peripherals and uses this information to optimize
node’s operation and to select the applications to execute.

 The implementation of the proposed concept is impossible
without solving two major challenges. First of all, one needs to
come up with HW architecture and develop inter-module
interfaces. A possible solution for this problem was first
sketched in [1] and then detailed in [3]. In this paper we focus
on the second part of the puzzle and propose the software (SW)
architecture for a dynamically reconfigurable HW platform.

II. WSAN APPLICATION DEVELOPMENT AND STATE OF ART
(SOA) SOFTWARE ARCHITECTURES

 As discussed in [4], the design of a typical WSAN
application includes six phases. During the first phase the
application requirements are identified. Next, these
requirements, design dimensions and respective trade-offs are
analyzed. The results of the first two phases define the design
of the system as whole and provide specifications for the
required HW and SW components. During the fourth phase the
new components are developed and integrated with the already
existing ones. Finally, the application is prototyped, tested, and
deployed. As one can see, the discussed procedure results in
highly effective solutions, the target parameters of which can
be well optimized (e.g., employing cross-level optimizations).
But the cost of this is the poor flexibility, since the resulting
HW and SW become application specific. It is hardly
surprising that the today’s SW architectures for WSAN nodes
are designed under the assumption of static HW structure and
support reconfiguration for only the topmost layers of stack.

Fig. 1. Proposed modular WSAN HW platform (in the centre – example
of an assembled node featuring three 802.15.4 radios, sensors, LED and
battery modules, around - various HW modules).

978-1-4799-8203-5/15/$31.00 ©2015 IEEE

A classical SW architecture of a WSAN node is depicted in

Fig. 2 [4]. An application is developed on top of the WSAN
middleware which glues together the HW, operation system
(OS), network stack and applications. The OS manages the
system resources usage, timeliness and controls peripherals
access of the active tasks. If present, the HW abstraction layer
handles standard OS calls to HW thus enabling to make OS’s
core device-independent. The primary objective of the
middleware is to support development, maintenance,
deployment and execution of WSAN applications. Based on
their purpose, the middlewares may be categorized into
programming abstractions, runtime support and interfaces [4],
although the recently developed solutions often combine all
these functionalities. Typically, only the components of the
two upper layers are implemented in dynamic fashion and may
be modified after the initial deployment.

Another solution has been proposed by Blumenthal et al. in
[5]. As depicted in Fig. 3, the architecture features specific HW
drivers to implement OS control over the HW components.
The single middleware core controls four optional components,
namely algorithms, modules, services and virtual machines.
These components can be made dynamic and exchanged
between the nodes [5].

As one can see, use of the described architectures with a
system featuring dynamic HW reconfiguration is hardly
feasible. One of the possible approaches to address this

problem is to employ an over-the-air reprogramming technique
(e.g., [6-7]) and overwrite or modify the SW image in full each
time when the HW is changed. The major drawbacks of this
are the significant amount of data to be transferred and the
need for the fully reliable and secure protocols to transfer new
SW images. Therefore, in order to address this problem, below
we propose a new SW architecture for the systems with highly
dynamic HW.

III. PROPOSED SOFTWARE ARCHITECTURE

A. Challenges and Requirements
The high level of HW dynamism characterizing the

proposed platform introduces a set of very specific problems
and challenges when it comes to the SW design. The first
critical challenge is the need for flexible, scalable and
transferable HW drivers, multiple instances of which could be
effectively executed in parallel. Indeed, each node is
composed from modules, the functionality and the relative
position for which is not known in advance. One of the
consequences of this is that the data interfaces between the
MPU and each connected peripheral are not known a priori.
Also a single node may host multiple identical peripherals
(e.g., radio transceivers or sensors). This emphasizes the need
for supporting creation of multiple HW driver instances, i.e.
driver “cloning”. Another critical problem is the selection of
the HW modules to be used for each executed task. To give a
practical example: if multiple radio transceivers featuring
different communication technologies are available on a node,
the decision on which ones to use for transferring each
particular piece of data should be made. Finally, the list of
applications which can be executed by a node depends on the
available HW modules and the needs of the network. This
requires having a mechanism for deciding which applications
should be launched and supporting application and respective
driver transfers between the nodes. The list above is not
excessive and can be continued.

B. Proposed Architecture
The proposed SW architecture is depicted in Fig. 4. The

core component of the middleware is the Resource manager
which is composed of the three major units. The first one is
the Module manager, which is a low-level entity responsible
for identification of the peripherals and modules (i.e.,
obtaining HW resource descriptors - refer to [1] for details),
controlling power supply of the peripherals and of the whole
node (e.g., dynamic voltage-frequency scaling), interpretation
and prioritization of the interrupts coming from various
peripherals. The second component is the Communication
manager which handles all the communication of a node with
external world. Based on the available modules (i.e.,
wired/wireless transceivers), the manager decides which
communication technology and which parameters to use.
Depending on the resources available for the manager and on
the range of modules and applications supported, the
communication parameters may be assigned either statically
or can be defined dynamically for each transmitted message.

Fig. 2. Software architecture for WSAN node proposed by Kourilehto et
al. [4]

Fig. 3. Software architecture for WSAN node proposed by Blumenthal
et al. [5]

Hardware & resources
descriptors

Hardware &
resources

descriptors

MPU
interface

specification

App. rules and
requirements

Driver mapping info

App and
communication

interface IDs

- optional element - data- software
Fig. 4. Proposed SW architecture and interfaces between SW components

The other functionalities which must be supported by a
Communication manager include: discovery of devices and
networks, translation of addresses and routing between the
different communication technologies, prevention of
interference between the wireless transceivers and handling of
communication interface change if the one currently used gets
blocked. Finally, the Application manager decides which
applications and services can be launched and supervises their
operation. Depending on the presence of control entities in the
network, the applications executed by each node may be either
defined by a node independently or dictated from remote. The
former option requires a node to have a decision unit which
will come up with the list of applications to run based on the
specially formulated set of rules. Also, in order to enable
transferring the tasks between the nodes, the applications
should be written in HW independent manner and handled by
a virtual machine (VM) or some other sort of interpreter.

Another important feature of the proposed architecture is
the design of low-level communication interface drivers used
by the peripheral drivers for communicating with peripherals.
The drivers for each interface (e.g. GPIOs, SPI, I2C, UART)
are implemented by specific SW instances, which are accessed
by the peripheral drivers through the standardized access
interfaces. The identifiers of the interfaces for each particular
peripheral connected to a node are defined as a part of
peripheral identification procedure and are reported to the
peripheral drivers by the module manager. After this, when a
driver desires to communicate with a peripheral, it calls the
respective low-level interface driver and provides the
identifier of the interface to use. On one hand, this enables to
abstract from the specifics of HW interface implementation

for particular MPU and to leave aside the details of
peripheral’s connection when implementing the peripheral
drivers. On the other hand, this can be used to enable sharing
of communication interfaces between the peripherals and
interface access prioritization.

The peripheral divers should be implemented as
independent threads which are interfaced to the respective
communication interface drivers and applications. In addition,
the drivers of wired and wireless transceivers should be
registered at the communication manager. If desired, the
drivers and the protocol stacks may be implemented as scripts
executed by an interpreter. One of the principal questions is
where and how the peripheral drivers are stored. The possible
options include: a remote network location, the internal
memory of MPU, and memory of HW modules.

C. Implementation
Although the development of the SW is still in progress,

the most critical components of the proposed architecture for
the HW platform depicted in Fig. 1 are already implemented.
The SW is written in C language and operates on top of
FreeRTOS [8] embedded OS. The simplified high-level
algorithm of the developed SW solution is depicted in Fig. 5.
The implemented SW includes the following components:
• the low level drivers for IMP,SPI,I2C,UART interfaces

and GPIOs;
• the full featured peripheral drives (see Table 1) for LED

modules, temperature, pressure, humidity and light
sensors, IEEE 802.15.4 and IEEE 802.15.4a UWB radio
transceivers and the basic drivers for Bluetooth Smart
transceiver;

Fig. 5. Simplified algorithm of operation of implemented SW.

Table I. Status of HW modules and respective peripheral SW drivers

HW Module Description SW driver status
Main STM32F206 microcontroller,

FRAM and dynamic voltage
control system

Basic functionality

Battery 3 x AAA batteries Not required
USB USB-UART interface Full featured

Environment
sensors

Pressure, temperature, humidity
and light sensors

Full featured

LED 8 LEDs Full featured
Radio 1 IEEE 802.15.4 2450 DSSS radio

transceiver
Full featured

Radio 2 IEEE 802.15.4a (UWB) radio
transceiver

Full featured

Radio 3 BLE (Bluetooth Smart) radio
transceiver

Basic functionality

Radio 4 433/868 MHz ISM band radio
transceiver

In progress

Radio 5 IEEE 802.11 b/g/n In progress
microSD card MicroSD card adapter In progress

• module, application and communication managers;
• applications implementing collection of the information

about node’s structure and periodically reporting these
data to a remote server.

In the current version of the SW the drivers and
applications are implemented as pre-compiled machine code
residing in the MPU internal program memory. In future, they
can be changed to scripts which can be downloaded over-the-
air. Similarly, the sets of rules used by the communication and
application managers are currently hardcoded and cover all
possible node structures. The communication manager has
quite simplistic structure and is configured to broadcast all the
messages via every communication technology available to a
node. The proposed SW architecture and its implementation
have been used as basis for demonstrations reported in [2] and
[9].

IV. CONCLUSIONS AND FURTHER WORK
In the paper we have proposed the software architecture

for the modular WSAN node hardware platform introduced
earlier. The proposed architecture is designed to support and
maximally benefit from the dynamism of underlying hardware
platform. For this, we have introduced as a part of node’s
middleware a special resource manager, which is composed of
the three components, namely the module manager, the
communication manager and the application manager. The
former one is responsible for collecting the information about
the peripherals available on each node, while the two latter
make decisions on the communication interfaces to use and
applications to launch. Each of the peripherals available on the
attached modules is controlled by a special peripheral driver
thread. In order to enable launching multiple driver instances
and handling various connections of the modules, the drivers
operate on top the specially designed low level
communication interface driver solutions.

Although the implementation of the full featured SW
architecture is still in its early phase, even the development of
the core components implementing just the most basic
functionalities has dramatically increased the capabilities of
the hardware platform. Nonetheless, there are still many
unsolved challenges. The first critical question which needs to
be answered is where and in which form the drivers and the
applications will be stored. The second major challenge is who
and how will decide which of the possible applications each
node will execute. Finally, the optimization of node’s
operation and data transfer in respect of node’s task, resources
and applications is a challenging problem of extreme
importance. In the future we plan to continue developing and
implementing the proposed software architecture and will try
to address some aspects of the listed challenges.

REFERENCES
[1] K. Mikhaylov and M. Huttunen, "Modular Wireless Sensor and Actuator

Network Nodes with Plug-and-Play Module Connection", in Proc. IEEE
SENSORS, Valencia, Spain, Nov. 2-5, 2014, pp. 470-473.

[2] K. Mikhaylov et al., "Extensible Modular Wireless Sensor and Actuator
Network and IoT Platform with Plug&Play Module Connection" in
Proc. ACM/IEEE Int. Conf. Inf. Proc. Sensor Netw., Seattle, USA, Apr.
13-16, 2015, pp. 386-387.

[3] K. Mikhaylov et al., Design and Implementation of Modular Wireless
Sensor and Actuator Network Nodes with Plug-and-Play Module
Connection. In press.

[4] M. Kourilehto et al., Ultra-Low Energy Wireless Sensor Networks in
Practice, Chichester: John Wiley & Sons Ltd, 2007.

[5] J. Blumenthal et al., “Wireless sensor networks - new challenges in
software engineering”, in Proc. IEEE Conf. Emerging Tech. Factory
Automation, Lisbon, Portugal, 16-19 Sept., 2003, pp. 551-556.

[6] M. Rossi et al., “SYNAPSE++: Code Dissemination in Wireless Sensor
Networks Using Fountain Codes “, IEEE Trans. Mob. Comp., vol. 9,
no. 12, pp. 1749-1765.

[7] A. Hagedorn, D. Starobinski, and A. Trachtenberg, “Rateless Deluge:
Over-the-Air Programming of Wireless Sensor Networks using Random
Linear Codes”, in Proc. ACM/IEEE Int. Conf. Inf. Proc. Sensor Netw.,
St. Louis, USA, Apr. 22-24, 2008, pp. 457-466.

[8] FreeRTOS [Online]. Available: http://www.freertos.org/
[9] K. Mikhaylov et al., " Modular Multi-radio Wireless Sensor Platform for

IoT Trials with Plug&Play Module Connection" to be presented at
Annu. Int. Conf. Mobile Comp. Netw., Paris, France, Sept. 7-11, 2015.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

