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Abstract
Supported by the remarkable progress across many technological domains, the Internet of Things (IoT) ecosystem
demonstrates steady growth over the few past years. This growth enables a number of new exciting applications.
Nonetheless, hardly one can say today that the utility of the IoT is used to its full potential. This fact is especially notable
for the monitoring applications deployed in remote areas. To address the needs of these use cases, in the article we pro-
pose a solution based on the combination of three key technologies: the low-power wide area networks, the unmanned
aerial vehicles, and the wireless power transfer. In the article, we first detail the novel concept of a wireless power
transfer-enabled unmanned aerial vehicle employed to charge the LoRaWAN sensor nodes. Then, via extensive simula-
tions and analysis of an illustrative LoRaWAN application, we investigate both technical and, notably, business perfor-
mance indicators, and compare them against the ones for a baseline scenario with no unmanned aerial vehicle. Our
results illustratively demonstrate that in the long-term perspective, the inclusion of a wireless power transfer-enabled
drone may drastically reduce the system’s operating expenses. At the very same time, our results highlight the limits,
bottlenecks, and trade-offs related to the proposed concept, thus providing the basis and calling for further investigation.
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Introduction

The importance of collecting more and more data
about the world around us grows every day. This fact
drives the development of the wireless sensing solution
and brings novel devices to the market. Many of these
devices will become the components of one single
entity—the Internet of Things (IoT).1,2 The concept of
IoT, which refers to interconnecting the diverse physi-
cal objects using information and communication tech-
nology (ICT), is associated, as a rule, with the
development of the three technologies. These are radio
frequency identification (RFID), wireless sensor

networks (WSNs), and machine-to-machine (M2M)
communications.

1National Research University Higher School of Economics, Moscow,

Russian Federation
2Saint Petersburg State University of Aerospace Instrumentation, St

Petersburg, Russian Federation
3University of Oulu, Oulu, Finland
4Brno University of Technology, Brno, Czech Republic

Corresponding author:

Konstantin Mikhaylov, University of Oulu, Erkki Koiso-Kanttilan katu 3,

FI-90014 Oulu, Finland.

Email: konstantin.mikhaylov@oulu.fi

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License

(http://www.creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work

without further permission provided the original work is attributed as specified on the SAGE and Open Access pages

(https://us.sagepub.com/en-us/nam/open-access-at-sage).

https://doi.org/10.1177/1550147719888165
http://journals.sagepub.com/home/dsn
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1550147719888165&domain=pdf&date_stamp=2019-12-02


Among all the various technologies composing the
contemporary IoT and M2M communication land-
scape,3 the ones belonging to the domain of low-power
wide area networks (LPWANs)4 stand out of the mass.
The market analyses show that these technologies
demonstrate the fastest growth rate among all IoT
communication solutions.5 This is hardly surprising,
since the LPWAN technologies complement existing
cellular mobile network and short-range technologies,
by combining the low costs, small power consumption,
and broad coverage within one single solution.

Of the several LPWAN technologies, which are cur-
rently present on the market, the one named
LoRaWAN6 leads with respect to the number of the
chipsets shipped.7 The physical layer of the technology
is based on the use of proper chirp-spread-spectrum
modulation technique named LoRa, patented by the
Semtech company. The media access and network
layers of LoRaWAN are specified by the LoRa
Alliance in the respective documents.8

A LoRaWAN network is composed of a single net-
work server (NS), one or multiple gateways (GWs),
and the end devices (EDs). All the data sent by the
EDs go through GWs to the NS, and vice versa. The
EDs, depending on the state of the radio channel
between them and the GW, may utilize one of several
quasi-orthogonal spreading factors (SFs) for communi-
cation. In essence, the selection of the SF enables a
device to trade the on-air transmission time (and thus
the consumed energy) for the communication range.
The EDs typically employ an ALOHA-like media
access mechanism, randomly selecting one of the
supported by the network channels. In Europe, the
LoRaWAN networks are usually deployed in the
license-free Industrial, Scientific and Medical (ISM)
868 MHz band. Importantly, unlike many other
LPWAN technologies, LoRaWAN networks can be
deployed not only by the telecom operators (the
so-called ‘‘public’’ networks) but also by private organi-
zations and individuals (the so-called ‘‘private’’ net-
works). This flexibility makes LoRaWAN technology
very versatile and well-suited for the sheer diversity
of wide-area monitoring use cases, especially in the
contexts of smart city and agriculture, nature, and
intelligent infrastructure monitoring.

At the same time, there are two other exciting tech-
nologies, which are not a part of the IoT ecosystem
themselves but which can enable new exciting opportu-
nities for it. These are the unmanned aerial vehicle
(UAV). Note that the terms ‘‘drone’’ and ‘‘UAV’’ are
used interchangeably in this article. Also, the terms
‘‘end device,’’ ‘‘ED,’’ and ‘‘sensor node’’ are used inter-
changeably.9 and wireless power transfer (WPT).10 The
UAV refers to an aircraft that performs flight without
a pilot onboard fully autonomously or under the

control of an operator from the land. Previously, the
UAVs were used primarily for military purposes, but
today their application range includes many civilian
use cases—search and rescue, land management, ship-
ment delivery, to name just a few. The WPT refers to
the idea of transferring the energy between the two
points without using wires. These technologies have
recently entered the everyday life, with the wireless
charging of smartphones and other handheld electro-
nics being, probably, the most illustrative example.

Motivated by the remarkable progress for these three
individual technologies, in this article, we propose com-
bining them, in order to enable the UAV charging the
LoRaWAN sensor nodes through WPT. The concep-
tualization of such a system constitutes the first contri-
bution and the key novelty of this article. By means of
network simulations and analytic methods, we charac-
terize both the technical and, notably, the business per-
formance indicators of the proposed system. Note, that,
to the best of our knowledge, no attempts to character-
ize the monetary costs and benefits for using a UAV in
the context of an LPWA network have been carried ear-
lier. These results constitute the second contribution of
the article. Basing our study on the carefully selected
from the state-of-the-art literature realistic technical
parameters, we demonstrate by means of extensive
simulations that the use of a WPT-enabled drone in a
typical, and thus illustrative, LoRaWAN application
enables to reduce the operating expenses (OPEX) of a
dense network in a long-term perspective. At the same
time, we point out some of the practical trade-offs and
limitations, including, for example, the number of the
nodes which can be served by a single UAV. This is the
third significant contribution of this article.

In our opinion, the systems similar to the one pro-
posed are especially beneficial for the scenarios with the
sensor nodes located in remote and hard-to-reach areas.
The service of such sensors inquires substantial costs,
which can be reduced or even nulled by employing the
proposed concept. Among the practical applications,
which will potentially benefit from using the proposed
system can be listed the various industrial (e.g., sensors
attached to the wind turbines or factory chimneys),
nature (e.g., seismic sensors located around volcanoes),
and infrastructure (e.g., dams, bridges, and tunnels)
monitoring use cases.

The article is organized as follows. We start by dis-
cussing the related works in section ‘‘Related works.’’
In section ‘‘Proposed concept and system model,’’ we
sketch our proposed concept and detail the system
model. In section ‘‘Models and assumptions,’’ we
describe and justify our models and assumptions. In
section ‘‘Results,’’ we first discuss our simulation setup
and then present the selected results, highlighting the
technical performance characteristics and the business-
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related performance metrics. In section ‘‘Discussion,’’
we discuss the obtained results and limitations of our
models. Finally in section ‘‘Conclusion and further
works’’, we summarize the key conclusions and discuss
the possible directions for further works in final section.

Related works

Even though we are not aware of any combination of all
the three targeted technologies, namely LPWAN, UAV,
and WPT, their partial combinations have been consid-
ered by other scholars. Specifically, Carrillo and Seki11

conceptualized a LoRaWAN GW with the long-term
evolution (LTE) backbone, which is mounted on a
drone and is used to improve the performance of com-
munication in rural areas. The similar approach was
used in Trasviña-Moreno et al.12 to collect the data from
the environmental sensing buoys deployed in the sea. In
Sharma et al.,13 a flying LoRaWAN GW as a part of an
intelligent transportation system was proposed. The
effects of mobility and use of drone-assisted communi-
cation in the context of mission-critical machine-type
communication were also investigated in Orsino et al.14

The studies addressing the combination of UAV and
WPT are much more numerous and focus on the two
main ideas. The former one implies the use of WPT to
charge the drone itself. The respective solution is discussed
in Jawad et al.15 A practical drone charging system based
on the magnetic resonance principles is reported in Xiao
et al.16 The employment of radio frequency (RF)-based
WPT for charging the miniature drones was investigated
in Gómez-Tornero et al.17 The possibility of allocating a
designated frequency band for the RF-based WPT to
charge the UAVs was proposed in Yong et al.18

Another possibility investigated in the earlier studies
is the WPT between the UAV and sensing devices. For
example, in Xu et al.,19,20 the mechanisms for defining
the optimal path for a drone featuring RF-based WPT
were proposed. The real-life solutions for transferring
the energy from a UAV to the sensors were instrumen-
ted and evaluated in-field in Chen et al.21 The practical
drone-based simultaneous wireless power and informa-
tion transfer (SWIPT) solution for battery-less sensors
was reported in He et al.22

Finally, to the best of our knowledge, the combina-
tions of WPT and LPWANs have been addressed by
only a few studies. Danish et al.23 investigated how the
in-band RF-based WPT toward LoRaWAN EDs
affects the communication performance of the network.
Galinina et al.24 conceptualized the idea of incentiviz-
ing the owners of wearables to participate in collabora-
tive data collection by providing the energy for their
devices using WPT. Among the several scenarios con-
sidered in this study, one suggests the use of drones
and implies connectivity based on LoRaWAN.

Proposed concept and system model

As the target scenario for this work, we selected a typi-
cal wide-area monitoring sensor network.25 Such net-
works are often deployed to monitor the natural
environment, plants, civil, or roadside infrastructure in
a suburban or rural environment. The network consists
of the EDs, measuring the parameters of interest (e.g.,
the tensions of material in constructions or the humid-
ity of the soil), and periodically reporting their mea-
surements along with their status (e.g., their battery
level) to a GW.26 Specifically, in this study, we consider
LoRaWAN to be the radio technology of choice.

Most often such systems are designed implying sen-
sors being powered either by mains or by batteries. The
former approach limits drastically the locations, where
the EDs can be deployed and introduces substantial
extra costs for wiring. The latter introduces additional
service costs for replacing the batteries or the sensor
nodes as a whole, once they run out of energy.

Therefore, in this article, we propose another
approach to address this challenge. Specifically, we
introduce into the system the UAV, which is equipped
with a WPT solution based on inductive coupling, and
using which it can recharge the sensor nodes, equipped
with the WPT receivers. The described scenario is illu-
strated in Figure 1.

Models and assumptions

In the following subsections, we detail and justify the
key models and assumptions concerning communica-
tion, energy consumption and transfer, mobility, and
expenses, which we employ in our analyses and
simulations.

Communication models

Radio channel propagation model. We consider that the
LPWAN is deployed in a suburban environment and
thus the propagation of the radio signal is described,
similarly to Van den Abeele et al.,27 by the
‘‘LogDistancePropagationLoss’’ model with an expo-
nent equal to 3 and the reference loss of 46.678 dB at a
1-m distance. Specifically, the value of the radio signal
power received by the GW is given by

Pres =Ptx +GED +GGW � 46:678+ 3 3 10 � log10dð Þ
ð1Þ

where d is the distance between ED and GW; Ptx, GED,
and GGW are listed in Table 1.

LoRaWAN collision model. The previous studies35–37 have
shown that communication in LoRaWAN networks is
affected by both inter- and intra-SF interferences. To
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account for these effects, we employ the model based
on the results, reported in Qadir et al.26

To determine whether a target packet is correctly
received, we compare its signal power level at the GW
with that of each other packet, transmitted during the
same time in the same frequency channel. If the differ-
ence in the power levels of the target packet and each
of the colliding packets exceeds the threshold values
given in Table 2 for the respective SF combination, we
consider the target packet to be received correctly.
Otherwise, we consider the target packet to get
corrupted.

To give an example, consider that the GW receives a
target packet with SF7 with the power of –70 dBm. If
there is another SF7 packet with the power below –
76 dBm, the target packet gets received correctly.
Otherwise—the target packet is considered to be cor-
rupted and lost. Now, consider a collision of the very
same target packet and a packet with SF8. To be able
to receive the target packet, the power level of the col-
liding SF8 packet should be below –54 dBm, that is,
not more than 16 dB stronger than the target packet.
Note that if the power levels of both SF7 and SF8
packets are about the same—both packets are received
correctly.

Even though the described model does not reflect all
the complexity of LoRa modulation interference

behavior (e.g., it does not account for the interference
between the adjacent frequency channels), it provides a
reasonable approximation of the most notable effects.
Note also, that in what follows we assume that a GW
at each moment of time is receiving at maximum one
packet over each possible SF (i.e. SF7 ... SF12). This
matches with the way the real-life LoRaWAN GW
equipment works.

Energy consumption and wireless power transfer
models

LoRaWAN sensor consumption. We base our energy
consumption model on the results reported in Casals
et al.38 and Bouguera et al.39 Specifically, we imply that
the sensor nodes operate as class A LoRaWAN devices
and send their data in unacknowledged mode.
Therefore, we use equation (2) and the data from
Table 3 to model the ED’s consumption. The consump-
tion of the sensor (10.5 mW) was obtained from
Table 4 in Bouguera et al.39

Iavg unACK =
1

Tgen

X11

i= 0

Ti � Ii ð2Þ

In equation (2) Ii stands for the current consumption
during phase i, Ti is the duration of phase i, and Tgen is

Figure 1. Key components of the proposed system.
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the period between the measurements, which is listed in
Table 1.

For our baseline scenario, we assume that a sensor
node is powered by three primary alkaline AA-sized
batteries, each having 1.5 V nominal voltage and the
typical capacity of 2800 mAh.28 Therefore, the total
capacity of the ED’s energy buffer equals
CED_prim = 45.36 kJ. For the UAV-based scenario, we
consider that the Lithium-ion batteries with a total
capacity of CED_sec = 43.416 kJ (e.g., a single
Panasonic NCR18650B 18650 cell:29 3.6 V nominal
voltage, 3350 mA h typical capacity, 1.625 A charging
current) power the sensor nodes. For both these cases,

we consider the lifetime of a sensor node to be
described by a linear battery model—equation (3) from
Rukpakavong et al.,40 that is

Lt =
C

�I
ð3Þ

where C is the battery capacity in mAh, and I is the
average current consumed (i.e. Iavg unACK).

LoRaWAN gateway consumption. Given that a typical
LoRaWAN sensor node can send its data at any
moment of time, the LoRaWAN GW has to monitor
and be able to receive the radio frames in each radio
channel at any moment. Therefore, without the loss of
generality, we consider the LoRaWANGW power con-
sumption to be constant and equal to PGW = 18 W.41

We assume that the GW is mains powered.

The power consumption of a flying drone. We consider the
UAV to be a low-altitude autonomous multi-rotor
drone. The previous studies,30,42,43 reveal that the
power consumed by such a drone while in the air does

Table 2. Signal-to-interference-noise-rate (SINR) thresholds for all SF combinations (based on results reported in Table 1 from
Goursaud and Gorce25).

SF of the target frame SF of the interfering frame

7 8 9 10 11 12

7 6 –16 –18 –19 –19 –20
8 –24 6 –20 –22 –22 –22
9 –27 –27 6 –23 –25 –25
10 –30 –30 –30 6 –26 –28
11 –33 –33 –33 –33 6 –29
12 –36 –36 –36 –36 –36 6

SF: spreading factor.

Table 3. States, variables, and their values for LoRaWAN unacknowledged transmission.38

State number (i) Description Duration (T) Current consumption (I)

Value (ms) Value (mA)

0 Sensing 25 3.2
1 Wake up 168.2 22.1
2 Radio preparation 83.8 13.3
3 Transmission [56.58 102.91 185.34 370.69 741.38 1482.75 3.6 83] 83
4 Wait first window 983.3 27
5 First receive window [262.14 131.07 98.30 49.15 24.58 12.29] 38.1
6 Wait second window RECEIVE_DELAY_2-RECEIVE_DELAY_1 T5 27.1
7 Second receive window 33 35
8 Radio off 147.4 13.2
9 Postprocessing 268 21
10 Turn off sequence 38.6 13.3
11 Sleep Tgen �

P10

i= 0

Ti 45310–3

Table 4. Characteristics of sensor node tasks.39

Task Time duration
(ms)

Consumed
power (mW)

Sensor (BMA220) 25 10.5
Data transmission
(SX1272)

6.5 92.4

MCU STM32L073
(4 MHz)

33.5 1.8

6 International Journal of Distributed Sensor Networks



not change substantially if the horizontal speed stays
below 15 m/s. Therefore, we assume the consumption
of the drone in-air to be constant and equal
Phover = 2000 W (e.g., the drone measured in Hwang
et al.30). Also, we assume that after leaving for the mis-
sion, the drone stays all the time in the air, even when
transferring the energy to the EDs. This assumption is
reasonable, since the sensors may be placed at loca-
tions, preventing a drone from landing near them (e.g.,
on masts, surfaces of the wall, and so on).

Note, that we consider that the available drone pay-
load is primarily utilized for carrying the energy storage
elements. Also, we imply that all the batteries on the
drone compose the single power domain, thus provid-
ing the energy both for the drone itself and for wire-
lessly charging the sensor nodes. The total energy
capacity of the drone is given by CD = 8.467 MJ
(three Li-Po battery packs with 49 V nominal voltage
and the cumulative capacity of 48 Ah).44 Likewise for
the EDs, we imply the linear battery model for the
drone.

Wireless power transfer. Finally, we imply the presence
of the WPT mechanism between the UAV and the EDs
based on magnetic resonant coupling principle.15,16,45

Note, that use of this technique implies that to charge a
sensor, a drone needs to approach it and continuously
hover at some centimeters to few meters distance15

from it. One of the factors limiting the charging of the
sensor node is the charging current of the battery on
the ED, which for NCR18650B cell equals 1.625 A.29

Therefore, we consider that the maximum power
accepted by a sensor node equals PED_chrg_RX = 6 W
and that the UAV always radiates this power when
charging the EDs. The efficiency of the power transfer
between the UAV and an ED is given by
hED_chrg = 90%.15

Mobility and scheduling

Drone’s mobility. Without the loss of generality, we con-
sider that the drone periodically, with a period Tmission

hours, starts its mission from its charging station,
located in the proximity of a LoRaWAN GW. After
taking off, the drone moves from one ED to another
with a constant horizontal speed of vD = 15 m/s fol-
lowing the minimum-cumulative-distance route,
found as a solution of the ‘‘traveling salesman’’ prob-
lem. After reaching a sensor node, the UAV stops,
hovering in the air, and charges the sensor battery to
full capacity.

Furthermore, we assume that once the energy of the
drone gets low (that is when the drone does not have
enough energy to charge the next ED and return to its
charging station), the drone returns to the charging

point. There the drone’s batteries are replaced, and it
continues the mission from the point, where it has
stopped. Therefore, the total energy consumption of
the drone is given by

EUAV = L
Phover

vD

+ T EDcharge PED charg RX +Phover

� �
ð4Þ

where Phover is the power consumption of the drone
while hovering, L is the total path traveled (including
the possible detours to charging station for replacing
the batteries), T EDcharge is the cumulative time of drone
charging the EDs, and PED charg RX is the power with
which the drone charges each ED.

Cost models

Energy costs. While estimating the OPEX, we first
account for the energy, consumed by the GW and to
charge the drone. For this, we estimate the total energy
consumption per year in Joules, convert it to kWh (i.e.
1 J = 2.78 3 10–7 kWh), and multiply by an average
per-kWh price of KkWh = 0.15 e/kWh (based on the
data reported in Statista31 for Finland).

Service and battery replacements. In the case of the base-
line scenario, we also account for the service costs for
replacing the batteries of the sensor nodes running out
of energy. These costs are composed of the three
components:

� The cost of the batteries, which we take equal to
Kbattery = 0.25 e/piece.32

� The traveling expenses. We assume that a servi-
ceman travels via the shortest distance route bet-
ween the nodes and estimate the traveling expenses
with the flat rate of Kservice_travel=0.25 e/km, as
specified by the Finnish Tax Office document.33

� The labor costs calculated from the working
time. The costs are composed of traveling time
(implying commuting between the locations
of the EDs with an average speed of vservice=
50km/h) and time needed for locating a sensor,
accessing it and replacing the batteries, which we
take equal to Tservice = 5 min. Based on Official
Statistics of Finland,34 we assume the labor costs
of Kservice_labor = 34.7 e/h.

Results

Simulation methodology and setup

To facilitate the analysis of the network performance,
we implemented all the described communication mod-
els in MATLAB environment. We also used MATLAB

Tiurlikova et al. 7



to find the shortest closed tour for the drone and ser-
vice person by solving the traveling salesman problem
(using the original MATLAB script available from
MathWorks46). The script has been modified to speed
up the simulations by disabling, by default, the path
visualization. When analyzing the power consump-
tion and estimating the OPEX, we used the combina-
tion of MATLAB and spreadsheet software. All the
relevant parameters of the models used in our simula-
tions and analysis are listed in Table 1. Note, that the
presented in the following sections results present the
values obtained for over the 1000 simulation rounds,
differing with respect to the EDs transmission pat-
terns, for at least 60 different ED distributions.

Selected results

Communication performance. Figures 2–4 illustrate the
selected results demonstrating the performance of
the targeted network for communication. Specifically,
Figure 2 provides insight into the scalability of the net-
work. As one can see, with the increase in the number
of devices, the probability of packet delivery (PDR)
sharply drops. Note that, as shown in Table 1, in our
simulations, we consider only a single LoRaWAN
channel. A real-life LoRaWAN network can feature
from three to over 16 different frequency channels,
allowing the EDs to select randomly one of these chan-
nels for their uplink transmission. This increases the
number of EDs supported in these networks with the
comparable levels of PDR proportionally to the num-
ber of the channels available. Figure 3 provides further
insight into how the packet losses depend on the SF of
the EDs. The LoRaWAN specification8 and the earlier
studies27 propose assigning for the devices the lowest
SF enabling reliable packet reception in the presence of
the noises. On the one hand, this enables to reduce the
energy consumption of the EDs. On the other—this is
also beneficial to the network since shorter packets
have a lower chance of colliding. For our simulations,
we employ the very same policy of SF assignment—the
closer the ED is to the GW, the lower SF it uses. The
results of this for a dense network scenario we illustrate
in Figure 3. One can see, that in a dense network the
packets encoded with a low SF and originating from
the nearest to the GW EDs are often received correctly.
The long-in-time and weak-in-power packets originat-
ing from the EDs located on the outskirts of the

Figure 2. Effect of number of EDs on the LoRaWAN
communication performance.

Figure 3. Mean PDR as a function of LoRaWAN ED’s SF.

Figure 4. Mean power consumption of an ED, as a function of
its SF and packet generation interval.
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network interfere with the short and more-high-power
packets from the nearest to the GW EDs, and often do
not get through.

Energy performance. We start investigating the energy
performance of the proposed system by analyzing the
mean power consumption of the EDs as a function of
its SF and the period of packet generation. The respec-
tive results are presented in Figure 4. As one can see,
depending on the reporting period, the power con-
sumption differs two levels of magnitude—ranging
from hundreds of microWatts and up to almost
50 mW. With the increase of the reporting period,
the ED’s consumption reduces and approaches the
sleep-mode level. Also, with the increase of the SF, the
consumption of the ED increases non-linearly. The dif-
ference in the mean consumption between an ED with
SF7 and SF12 is 1.5–3 times, depending on the packet
generation period. The distribution of energy consump-
tion between sleep and active operation is illustrated
for an ED in Figure 5. Depending on the SF and the
packet generation period, the sleep-mode consumption
may constitute 50%–98% of the total amount of
energy consumed by an ED.

Next, we focus on our baseline scenario and estimate
the lifetime of the EDs, depending on the used SF and
the period of reporting. These results are presented in
Figure 6. The chart reveals that depending on the
desired data report rate, the lifetime of the EDs may
vary in the range from several months to over 6 years.
Besides, one can easily see that the devices utilizing

different SFs exhaust their batteries at different
moments of time.

This potentially leads to two notable issues. The
first one is related to the traditional SF assignment
policy employed in LoRaWAN. Namely, since an SF
is assigned to the EDs based on its radio channel
condition—many devices located close to each other
get the same SF. Therefore, if the devices with the
same SF exhaust their batteries at the same time—
there may be no sensed data coming from a specific
holistic area. The second issue is related to the service
of such devices. Since the devices with different SFs
get out of order at different moments of time and
given that the network has to be kept up and
running—the service, such as battery replacement,
will have to be carried for the EDs utilizing each SF
independently. This will likely introduce additional
expenses.

Finally, we focus on the energy consumption of the
drone for our target scenario. For this, solving the ‘‘tra-
veling salesman’’ problem, we first define the shortest
closed-loop path connecting all the EDs. Note that the
implied WPT technology between the UAV and the
EDs needs the distance between these two to be very
small. Specifically, the probability that a drone can
serve several EDs simultaneously is given by

Pr n.1ð Þ= 1�
YNED�1

i= 1

1� pRWPT
2

pRarea
2

� �i

ð5Þ

where RWPT is the WPT range doubled, Rarea is the
radius of the test area, around which the EDs are

Figure 5. The ratio of energy spent by and ED in sleep to that
used for the active operation for different SFs and packet
generation intervals.

Figure 6. The lifetime of EDs for the baseline scenario as a
function of the SF used and the interval of packet generation.
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uniformly deployed, and NED is the number of ED. To
give an example, for RWPT = 1 m, Rarea = 4 km, and
NED = 1000, this probability is about 0.03.

The mean length of the drone’s path as a function of
the number of EDs in the network is illustrated in
Figure 7. One can see that with the increase in the num-
ber of EDs, the length of the path also increases, but
the rate of this increase if sub-linear.

Figure 8 illustrates the energy required for UAV to
charge an ED with a particular SF, depending on the
period of the drone’s visit. One can see that the differ-
ence for the energy to charge the EDs with SF7 and

SF12 is close to two times. With the decrease of the
UAV visiting period, the amount of energy consumed
for charging an ED increases linearly.

Next, based on the information about the path, the
consumption of the EDs and the WPT transfer model
discussed, we calculate the total amount of energy,
which a drone consumes for flying the route and charg-
ing all the EDs, after those being active for Tmission

hours. These results are presented in Figure 9. One can
see that with the increase of the number of EDs in the
network, the total energy required to visit and charge
them all increases sub-linearly. Nonetheless, comparing
the results with the drone’s energy buffer volume listed
in Table 1, one can see that the drone fully loaded with
batteries can serve at best around 50 EDs during a sin-
gle flight. The good thing is that with the increase of
the ED density, the drone needs to travel less between
the EDs. For this reason, while charging 500 EDs, the
UAV will have to be recharged only five times.

The same effect can be seen in Figure 10, which pro-
vides an insight into the distribution of the drone’s con-
sumption as a function of the number of EDs in the
network. One can see that when the EDs are located
sparsely, a greater share of energy is used by the drone
for moving between the EDs. With the increase of the
ED’s density, the portion of energy spent on charging
the EDs goes up.

Operating expenses. Having characterized the key tech-
nical performance indicators for the proposed and the
baseline scenario, we estimate how efficient the pro-
posed approach is moneywise. The mean operating
costs for the baseline and the proposed scenario as a

Figure 7. Length of the shortest closed loop connecting all the
EDs and the drone’s charging station as a function of the
number of EDs in the network (mean, min, and max over
different ED spatial distributions).

Figure 8. The energy needed for the drone to charge an ED as
a function of its SF and report period.

Figure 9. Total energy consumed by the UAV for different
numbers of EDs in the network (mean, min, and max over
different ED spatial distributions).
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function of the number of EDs in the network are
depicted in Figure 11. For the baseline scenario, the
expenses are composed of the two components: the
power consumption of the LoRaWAN GW and the
costs associated with the replacement of the batteries
on the nodes. For the target scenario, the total expenses
are the sum of the cost of energy used by the
LoRaWAN GW and for charging the drone. As one
can see from the presented results, the proposed drone-
based solution reduces the total network operation
costs by 50%–80% for a decently dense network
depending on the number of devices in the network.

Meanwhile, for a very sparse network, the costs of both
approaches are comparable. Furthermore, in Figures
12 and 13, we illustrate the cumulative expenses as a
function of time for the two discussed scenarios. For
the proposed scenario, the OPEX increases linearly as
the energy gets consumed. In the baseline scenario,
there is a linearly increasing component associated with
the energy consumption of the LoRaWAN GW.
Nonetheless, the major contribution to the total OPEX
increase brings the service (i.e. the battery replace-
ments) of the EDs. The periodic stepwise increases of
the OPEX are due to these service operations. As a
result, one can see in Figure 13 that after

Figure 11. Mean yearly costs of the network upkeep for
baseline and proposed scenarios.

Figure 10. The ratio of energy spent by the drone for traveling
and for charging the EDs for different number of EDs in the
network (mean, min, and max over different spatial distributions
of EDs).

Figure 12. Cumulative expenses as a function of time for
baseline and proposed scenarios (NED = 10).

Figure 13. Cumulative expenses as a function of time for
baseline and proposed scenarios (NED = 250).
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approximately 18 months after the beginning of the
operation, the drone-based system becomes more eco-
nomically efficient, than the one exploiting manual
labor.

Discussion

The presented results demonstrate that the proposed in
this article concept is feasible and enables to reduce the
operating costs for a dense LoRaWAN network sub-
stantially. Nonetheless, in what follows, we point out
several limitations of our study and speculate further
on the obtained results.

First of all, we have to note that in this study we
have not considered the capital expenses due to deploy-
ing the charging station for the drone, acquiring the
drone and equipping the EDs with secondary batteries
and WPT receivers. Neither we consider the cost of
drone service, replacement, or other costs (e.g., the
insurance). Also, we did not consider the aging of the
secondary batteries in the drone-served network, which
may require them to be also replaced from time to time.
These may increase the starting costs for drone-based
scenario substantially, making it less attractive.

Second, in this study, we have investigated just a
very limited set of scenarios. Specifically, we did not
consider how non-uniform distribution (e.g., clustering)
of the EDs and the different shapes of the test areas
affect the results. The effect of the charging station
position was not investigated either. Also, we limited
our examination to the case of a single drone and a sin-
gle LoRaWAN GW only. The different traffic patterns
of the EDs and the possible heterogeneity of the net-
work, as well as a possible need for data prioritization,
were not considered either.

Third, in our study, we implied that the UAV is used
only to charge the EDs. Meanwhile, the drone can also
act a mobile sensor itself, collect the data from the sensors
or calibrate them, or even deploy, move, or collect the
sensors themselves. Also, the level of accessibility (e.g.,
the minimal distance between an ED and the UAV) for
the different sensors in practice may also differ.

Finally, the models used in our study may be further
revised to account for the new effects, thus making
them more accurate. For example, in this study, we
have not considered the acceleration/deacceleration of
the UAV, the procedures for ED localization by the
UAV, and the energy losses due to misalignment of the
WPT coils on UAV and the ED.

For all these reasons, our results represent just the
first-order approximation and should be treated
accordingly. However, in our opinion, these results
show that the proposed in this article concept is poten-
tially viable, and motivates the more detailed evalua-
tion of the proposed system.

Conclusion and further works

The key novelty and contribution of this article is
the combination of the three new technologies, namely
the LoRaWAN, UAV, and WPT, within a single
solution—a WPT-enabled UAV charging the LoRaWAN
sensor nodes. By means of network simulations and ana-
lytical methods, we characterized both the technical and,
notably, the business performance indicators for our
proposed scenario and compared it against the baseline
scenario with no UAV. Note, that the business perfor-
mance indicators, such as the operation costs, are rarely
considered in the state-of-the-art literature dealing with
LPWA, UAV, and WPT. This makes our results espe-
cially interesting. Our results showed that for a network
composed of the nodes reporting even once a day, the
proposed approach enables to reduce the operating
expenses by removing the need for manual battery
replacement. With the increase of the number of the
devices, in a long-term perspective, the cost efficiency of
the drone-based solution increases to over 400% for a net-
work composed of 500 nodes. At the very same time, our
results show that the state-of-the-art technical limitations
for the drone’s battery volume, its energy consumption
for hovering and, especially, the limited maximum charg-
ing current of the ED’s secondary battery, restrict the
number of the EDs served by a single UAV to only a few
dozens.

In the future works, we plan to consider the case of
several UAVs, including addressing the problem of defin-
ing the optimal number of drones serving the network
and optimizing their behavior. This can be modeled, for
example, as a vehicle routing problem (VRP).47 Also, we
will consider detailing our models further by addressing a
more realistic (e.g., the non-uniform) sensor node deploy-
ment and accounting for the non-line-of-sight propaga-
tion of the radio signals, different ED accessibility, and
various data traffic patterns of the EDs. Another impor-
tant direction of the future works is to introduce into the
consideration the realistic effects, such as the WPT per-
formance degradation due to the imperfect alignment of
the ED’s and UAV’s coils, to give just one example.
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