

Regional Distribution of the /el/-/æl/ Merger in Australian English

Steven Coats¹, Chloé Diskin-Holdaway², Debbie Loakes² ¹University of Oulu, Finland; ²University of Melbourne, Australia

Background

- Australian English has long been considered regionally homogeneous but has "begun to exhibit more widespread social and regional variation than has previously been acknowledged" (Cox and Fletcher, 2017, p. 20)
- Large-scale geolinguistic studies remain few
- This research concerns **prelateral merger of /e/ and** /æ/ (e.g., *celery = salary, Alan = Ellen*)
- Previously investigated mainly in southern Victoria/Melbourne (e.g. Diskin et al. 2017; Diskin-Holdaway et al., 2024; Loakes et al., 2017, 2024); some evidence for the merger from Queensland
 Previous studies have mostly relied on small datasets and controlled wordlist recordings
 We consider the merger in a large, naturalistic speech dataset:
 Is the merger of /el/-/æl present across all states of Australia, or only in Victoria?
 How does the merger pattern in a large-scale corpus of naturalistic speech, compared to the small samples of controlled word list data that has dominated previous research?

Table 2: Interpretation of Bhattacharyya Difference values

BDiff > 0 /e/ and /æ/ more different before C than before L

BDiff = 0 /e/ and /æ/ equally different before /e/ and /æ/

BDiff < 0 /e/ and /æ/ more different before L than before C

Spatial analysis

- Moran's *I* for global spatial autocorrelation (Moran, 1950): Are the BDiff values spatially clustered in this dataset?
- Moran's I = 0.235, p = 0.001
- Moderate clustering of the merger

Materials and Methods

- Data from CoANZSE Audio (<u>https://coanzse.org</u>)
- Audio and ASR transcripts from 38,786 videos uploaded to YouTube channels of Australian local councils in 404 locations (Coats 2024a,b)
- Phone-level alignment with the **Montreal Forced Aligner** (McAuliffe et al. 2017) and its default English acoustic model and dictionary (v3.0.0)
- F1 and F2 formant values for /e/ and /æ/: Extracted at vowel midpoints using **Parselmouth-Praat** (Jadoul et al., 2018), a Python interface for **Praat** (Boersma and Weenink, 2024)

Getis-Ord local *G*^{*}_{*i*} for local spatial autocorrelation (Getis and Ord, 1992; Ord and Getis, 1995; Getis, 2010): For each location, is it in a "hot spot" or a "cold spot"?

Table 3: Interpretation of Moran's I and Getis-Ord Gi* values

- *I* = 1 Values perfectly clustered
- *I* = 0 Values randomly dispersed
- *I* = -1 Values perfectly distributed
- $G_i^* > 0$ Location is in a "hot spot"
- $G_i^* < 0$ Location is in a "cold spot"

Results

• Overall, these two vowels are more distinct in nonprelateral contexts and more similar in prelateral contexts (Fig. 1)

Figure 4: Bhattacharyya Difference values

- Raw BDiff values: Highest in Melbourne and Southern Victoria (Fig. 4)
- Smoothed values (spatial correlation statistic G^{*}_i): trend is strongly evident (Fig. 5)

• Vowels were extracted from stressed syllables in two contexts: prelateral (/æl/ and /el/, e.g. *value*, *well*) and non-prelateral (/æC/ and /eC/, e.g. *fact*, *next*)

Table 1: Number of vowel tokens by state/territory and context

	Contoxt	count		Contoxt	count
	CONCEXE	COUNT		CONCEXE	
ACT	/æl/	548	SA	/æl/	10,456
	/æC/	11,308		/æC/	240,279
	/el/	1,232		/el/	22,726
	/eC/	11,917		/eC/	269,945
NSW	/æl/	20,105	TAS	/æl/	4,178
	/æC/	465,825		/æC/	89,067
	/el/	46,508		/el/	8,815
	/eC/	531,894		/eC/	94,512
NT	/æl/	85	VIC	/æl/	29,097
	/æC/	1,346		/æC/	625,318
	/el/	163		/el/	69,308
	/eC/	1,590		/eC/	683,640
QLD	/æl/	13,875	WA	/æl/	5,233
	/æC/	332,394		/æC/	133,116
	/el/	28,041		/el/	14,016
	/eC/	375,405		/eC/	155,317

- After filtering, 4,297,259 vowel tokens from 252 locations (Tab. 1)
- Quantifying the merger: **Bhattacharyya Difference**, the difference of negative logarithm of the

Figure 1: Bhattacharyya Difference values for 252 locations

• Trend is strongest in Victoria (Fig. 2)

Figure 5: G_i* values for Bhattacharyya Difference

Conclusions, caveats, and outlook

- Confirmation of previous research: Feature is strongest for speakers in Melbourne and Southern Victoria
- Values for Perth/Western Australia warrant investigation
- False positives and lack of speaker diarization may limit the generalizability of findings
- Future work: automatic annotation of demographic parameters, investigation of specific localities and discourse contexts

References

- Anil Bhattacharyya. 1943. On a measure of divergence between two statistical populations defined by their probability distribution. *Bulletin of the Calcutta Mathematical Society*, 35:99–110.
- Paul Boersma and David Weenink. 2024. *Praat: Doing phonetics by computer* [Computer program]. Version 6.3.10.
- Steven Coats. 2024a. Building a searchable online corpus of Australian and New Zealand aligned speech. *Australian Journal of Linguistics*.
- Steven Coats. 2024b. CoANZSE Audio: Creation of an online corpus for linguistic and phonetic analysis of Australian and New Zealand Englishes. In *Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING* 2024), pages 3407–3412.
- Felicity Cox and Janet Fletcher. 2017. *Australian English pronunciation and transcription*, 2 edition. Cambridge University Press.

Bhattacharyya Coefficient (Bhattacharyya 1943) for the two contexts in each location

Bhattacharyya Coef. = $\int \sqrt{P(x) \cdot Q(x)} dx$ Bhattacharyya Dist. = $-\ln(BC)$ Bhattacharyya Diff. = BDist_C - BDist_L

 For each location, how merged are vowels in nonprelateral contexts such as *fact* and *next* compared to prelateral contexts such as *value* and *well?* (Tab. 2)

Figure 3: Mean locations of most frequent words, prelateral context (left) and non-prelateral context(right), Nearey-z-score-transformed F1/F2 values

 Mean F1/F2 values for vowels in selected common words, as realized by Victorian speakers (red) and New South Wales speakers (blue), are quite similar in non-prelateral contexts (on the right), but differ in prelateral contexts (left) Chloé Diskin, Deborah Loakes, Rosey Billington, Hywel Stoakes, Simón Gonzalez, and Sam Kirkham. 2019. The /el-/æl/ merger in Australian English: Acoustic and articulatory insights. In *Proceedings of the 19th International Congress of Phonetic Sciences, Melbourne, Australia 2019*, pages 1764– 1768.

Chloé Diskin-Holdaway, Debbie Loakes, and Josh Clothier. 2024. Variability in cross-language and cross-dialect perception. How Irish and Chinese migrants process Australian English vowels. *Phonetica*, 81(1):1–41.

Arthur Getis and J. K. Ord. 1992. The analysis of spatial association by use of distance statistics. *Geographical Analysis*, 24(3):189–206.

Yannick Jadoul, Bill Thompson, and Bart de Boer. 2018. Introducing Parselmouth: A Python interface to Praat. *Journal of Phonetics*, 71:1–15.

Debbie Loakes, Josh Clothier, John Hajek, and Janet Fletcher. 2024. Sociophonetic variation in vowel categorization of Australian English. *Language and Speech*, 67(3):870–906.

Debbie Loakes, John Hajek, and Janet Fletcher. 2017. Can you t[æ]ll I'm from M[æ]lbourne? *English World-Wide*, 38(1):29–49.

P. A. P. Moran. 1950. Notes on continuous stochastic phenomena. *Biometrika*, 37(1/2):17–23.

J. K. Ord and Arthur Getis. 1995. Local spatial autocorrelation statistics: Distributional issues and an application. *Geographical Analysis*, 27(4):286–306.

