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[1] We present a quasi-steady two-dimensional (axisymmetric) model of the heliospheric
transport of galactic cosmic rays. The model is based on stochastic simulation techniques
and includes all the modulation mechanisms that cosmic rays experience in the
heliosphere: convection, adiabatic cooling, diffusion, and drifts. A special emphasis is
given to the cosmic ray transport in the vicinity of the heliospheric current sheet
(HCS), and a new method to calculate the wavy current sheet drift is presented. We study
cosmic ray modulation in different solar modulation conditions and levels of waviness
of the current sheet. We discuss changes in the cosmic ray spectrum and the dominant
streaming patterns of cosmic rays in the heliosphere for different solar polarities and
HCS tilt angles.
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1. Introduction

[2] Galactic cosmic ray (GCR) modulation in the helio-
sphere has been intensively studied during the last decades.
Still, there are some open questions, especially on the
relative roles of different modulation mechanisms for dif-
ferent solar polarity and activity phases. Most modulation
models are based on a solution of the transport equation of
galactic cosmic rays developed by Parker [1965].
[3] The transport equation includes different modulation

mechanisms that cosmic rays undergo on their travel in the
heliosphere. Cosmic rays suffer from adiabatic energy
losses in the expanding solar wind, diffusion on inhomoge-
neities of the heliospheric magnetic field (HMF), convec-
tion by the solar wind and drifts. Many methods have been
developed to solve this equation numerically, most of them
employing the finite difference technique [Jokipii and Levy,
1977; Burger and Potgieter, 1989; Scherer et al., 2002]. An
alternative method is to reduce the problem from Parker’s
differential equation (which is of the Fokker-Planck type) to
a set of ordinary differential equations that can be solved
using the stochastic simulation technique, which has been
successfully applied to various astrophysical problems (see
section 3). This method allows to study processes, including
those with unlimited derivatives (e.g., shocks), that cannot
be easily considered by traditional methods. This method
has been applied to heliospheric transport of cosmic rays in
one-dimensional (1-D) case [Yamada et al., 1998; Gervasi
et al., 1999b; Usoskin et al., 2002] and in 2-D case without
the heliospheric current sheet (HCS) drift [Jokipii and Levy,

1977; Gervasi et al., 1999a; Alanko et al., 2003] or with a
flat HCS [Zhang, 1999].
[4] Because of a clear difference in cosmic ray modula-

tion in successive polarity periods, it is important to
consider particle drifts [e.g., Jokipii and Levy, 1977; Isenberg
and Jokipii, 1979]. Note that most earlier models include
HCS drift as a d-function limit of the regular gradient drift
[e.g., Jokipii et al., 1977; Jokipii and Thomas, 1981]. The
results predict a stronger dependence of the GCR intensity
on the HCS tilt angle for qA < 0 than for qA > 0 conditions
[Potgieter and Moraal, 1985]. Another approach was used
by Burger et al. [1985] who suggested that the HCS drift
should not be treated as a d-function type modification in
the gradient-curvature drift equations but needs to be
extended to a region within 2 Larmor radii from the sheet.
When applied to a wavy HCS, this leads to the effective
drift ‘‘cone’’ [Burger and Potgieter, 1989]. It is widely
recognized by now that drifts play a significant role in
cosmic ray modulation, especially around solar activity
minima. However, with increasing solar activity, other
time-dependent phenomena, such as the propagating inter-
action regions, have a large contribution in modulation, and
attempts trying to explain modulation by drift effects
alone have not been very successful (see, e.g., reviews by
Potgieter [1998], McDonald [1998], and Jokipii and Kóta
[2000]).
[5] Although there are sophisticated, three-dimensional

models of cosmic ray transport in the heliosphere [see, e.g.,
Kóta and Jokipii, 1983; Hattingh and Burger, 1995b], it is
still useful to study periods of low solar activity with
simpler models. We present here a steady-state, 2-D (axi-
symmetric) model of GCR transport, which can be used to
study the drift-dominated modulation during low solar
activity, when the heliospheric current sheet is well orga-
nized and the heliospheric conditions are fairly quiet. We
first describe a new model to simulate the drift in the case of
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a wavy current sheet and discuss some basic characteristics
of the modelled drift velocity. We then describe our 2-D
simulation model for GCR transport and discuss the results
of the model for several situations.

2. Transport Equation

[6] The transport of cosmic rays in the heliosphere is
described by Parker’s equation which is of the Fokker-
Planck type [Parker, 1965; Toptygin, 1985]. This equation
includes the diffusion of particles along and perpendicular
to the magnetic field lines, the gradient-curvature (regular)
drift in the heliospheric magnetic field, the drift along the
heliospheric current sheet, the convection with the solar
wind, and the adiabatic energy losses in the expanding solar
wind. For cosmic ray number density this equation can be
written in the form [see, e.g., Parker, 1965; Burger and
Potgieter, 1989]:

@U

@t
¼ r � Ks � rU � VswU � hvDiUð Þ þ 1

3
r � Vswð Þ @

@T
aTUð Þ;

ð1Þ

where U(T, r, t) is the cosmic ray number density per unit
interval of particle kinetic energy, T; Vsw is the solar wind
speed; a = (T + 2 Tr)/(T + Tr) where Tr is the particle’s rest
energy (for a proton Tr = 0.938 GeV); Ks is the symmetric
part of the diffusion tensor which contains diffusion
coefficients along (kk) and perpendicular (k?) to magnetic
field lines. hvDi is the drift velocity, averaged over the near-
isotropic particle distribution, and includes the drift along
the heliospheric current sheet, hvDiS, and the gradient-
curvature drift in the regular heliospheric magnetic field,
hvDiR [Jokipii and Thomas, 1981]. The drift velocity is
usually considered as

hvDi ¼
1

3
Pvr� B

B2

� �
; ð2Þ

where P and v are particle’s rigidity and velocity, respec-
tively, andB is the regular magnetic field vector.We note that
such a definition guarantees the divergence-free nature of
drifts as requested by Liouville’s theorem. Although the drifts
per se cannot produce any CR modulation, they do affect the
modulated GCR spectra by redirecting particles inside the
heliosphere where the usual convection-diffusion modula-
tion is present [e.g., Jokipii et al., 1977].

[7] In the present paper we assume Parker’s magnetic
field model [Parker, 1958] with a constant field at the Sun
and a constant radial solar wind speed:

B r; qð Þ ¼ A

r2
er � Gef
� �

� 1� 2H q� qsð Þð Þ; ð3Þ

where G = tan y = W r sin q/Vsw corresponds to the angle y
between the magnetic field and the radius vector, W = 2.866 �
10�6 s�1 is the (sidereal Carrington) angular rotation rate of
the Sun (rotation period is 25.38 days), and H is the
Heavyside step function. Depending on the sign of A in
equation (3), the magnetic field points either outward in the
northern hemisphere (A > 0) or inward (A < 0). The polar
angle of the heliospheric current sheet qs can be written as
[Jokipii and Thomas, 1981]:

qs ¼
p
2
þ sin�1 sina � sin fþ rW

Vsw

� �� �

 p
2
þ a sin fþ rW

Vsw

� �
; for a << 1; ð4Þ

where a is the tilt angle of the sheet.
[8] The oppositely directed magnetic field lines confront

at the heliomagnetic equator and a thin heliospheric current
sheet is created in the interface of opposite polarities. The
structure of the sheet strongly depends on the phase of the
solar cycle. Since the magnetic axis of the Sun is tilted with
respect to the rotational axis, the sheet produces a wavy
structure, the so-called ballerina skirt. In an axisymmetric
approximation the global HCS waviness is defined by the
HCS tilt angle, which roughly corresponds to the tilt of the
solar dipole axis with respect to the rotational axis. Figure 1
shows the variation of the HCS tilt angle for the time period
1976–2005. The tilt angle values are determined by Wilcox
Solar Observatory (newer model, radial boundary condi-
tion). The drift velocity in the regular heliospheric magnetic
field can be derived from equations (2) and (3) [see, e.g.,
Jokipii and Levy, 1977; Burger and Potgieter, 1989] and is
directed equatorward (poleward) for qA > 0 (qA < 0).
[9] The HCS drift is caused by the reversal of the

particle’s Larmor gyration direction when it crosses the
HCS. The drift motion is directed along the HCS and
perpendicular to HMF. The HCS drift exists only in a
narrow region around HCS, comparable to a few gyroradii.
The HCS drift direction also depends on HMF polarity
being toward (away) the Sun for qA < 0 (qA > 0).

Figure 1. Heliospheric current sheet (HCS) tilt angle for the years 1977–2005.
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[10] While the HCS drift is responsible mainly for the
radial transport of GCRs around the ecliptic plane, the
gradient-curvature drift operates in latitudinal direction all
over the heliosphere. For qA < 0, the gradient-curvature
drift drives particles from equatorial to polar regions leading
to a loss of particles in the equatorial region. The HCS drift
balances the effect of gradient-curvature drift by driving CR
particles inward along the HCS. For qA >0 the situation is
opposite. Thus the gradient-curvature drift and the HCS
drift balance each other, in agreement with the divergence-
free nature of the drift velocity field [cf. Burger and
Potgieter, 1989]. Here we present a new way to include a
wavy HCS drift into numerical models of CR transport in
the heliosphere, developing the approach by Burger et al.
[1985].

2.1. Drift in a Flat Current Sheet

[11] Following Burger et al. [1985], let us assume the
GCR particle distribution around the HCS to be isotropic
and the magnetic field to be homogeneous and of equal
magnitude but of opposite directions on opposite sides of
the sheet. Although equation (2) contains a d-function
singularity at the sheet crossing, individual particles within
two Larmor radii from the sheet experience a finite gradient
drift either toward or away from the Sun, depending on
solar polarity and the phase angle of the particle at the sheet
crossing [e.g., Burger et al., 1985]. An equation giving the
average relative HCS drift velocity of a particle takes the
following form (a detailed calculation of the flat HCS drift
can be found in the work of Isenberg and Jokipii [1979] and
Burger et al. [1985]):

hvDiS
v

¼ 1

p

Z 1

0

Z
vD

v

� 	
d8

� �
dl; ð5Þ

where l = cos(g), g is the pitch angle of the particle, and
hvDiS is the HCS drift velocity,

vD

v
¼ sin hð Þ

h

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p

cos hð Þ ¼ sin 8ð Þ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p L0

RL

� � ;
8>><
>>:

ð6Þ

where h is the phase angle of the particle at the sheet
crossing, and RL and L0 are particle’s Larmor radius and
distance to the sheet, respectively. Limits of integration,
over an auxiliary angle 8, for the inner term in equation
(5) are determined by the condition jcos(h)j � 1. Then
the flat HCS drift velocity of equation (5) is given as

hvDiS ¼ A

jAj hvDiS sin er þ cos e�
� �

; ð7Þ

where hvDiS can be numerically approximated as

hvDiS
v

¼ 0:4526� 0:4034
L0

RL

� �
þ 8:807 � 10�2 L0

RL

� �2

; ð8Þ

whenever (L0/RL) < 2. The maximum drift velocity of
about 0.45 v is achieved at the sheet and it rapidly
decreases as the distance to the sheet increases. The
resulting HCS drift velocity relative to the particle’s
velocity is shown in Figure 2.
[12] Burger and Potgieter [1989] suggested that the

assumption of a homogeneous magnetic field along the
HCS is justified only for particles with rigidity less than
10 GV. We found it unreasonable to cut the drifts off sharp
at a specific rigidity as it produces unphysical breaks in the
modulated CR energy spectra. Accordingly, we reduce the
drifts gradually with increasing rigidity. Since high-energy

Figure 2. HCS drift velocity in the flat sheet.
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particles (>100 GV) should hardly experience any drift,
while for low-energy particles (�1 GV) the drift effects are
significant, we assumed that the region around the Sun
where the GCR particles experience drifts depends on
particle rigidity. We defined an ‘‘effective’’ drift region for
a particle with rigidity P as

DD ¼ 100AU

P=1GVð Þn ; ð9Þ

where n is a free parameter. DD defines the maximum
distance from the Sun where the drift is still applied on
GCR particles. Such a definition guarantees the validity of
local HCS flatness approximation: particle’s gyroradius Lo
is smaller than the distance between HCS humps (about
6 AU). Note that the assumption of an effective drift region
is a technical approach which only helps to reduce the drifts
at higher rigidities and ensures a smooth converging of CR
spectra. We have used n = 0.75 but the exact value of this
parameter is not crucially important.

2.2. Drift in a Wavy Current Sheet

[13] The assumption of a flat HCS is realistic only during
the solar minimum when the current sheet tilt angle is small.
From Figure 1 we see that the minimum value of the tilt
angle, about 5 degrees, was reached in 1986–1987 and
1996–1997. Thus the flat sheet approximation is expected
to be valid only for a couple of years per cycle. In order to
study GCR intensity variations over longer timescales
(wider solar activity range), a more realistic approach is to

study a wavy HCS with a larger tilt angle. It has been noted
by many authors [e.g., Potgieter et al., 1993; Le Roux and
Potgieter, 1995] that the HCS drift and changing tilt angle
can explain GCR variations during low solar activity but
usually fail for moderate or strong solar activies. Also, when
solar activity increases, the HCS structure gets more com-
plicated and the assumption of a tilted HCS is an oversim-
plification. Since our model is 2-D and cannot model
transient, time-dependent phenomena, we restrict our study
to periods of low-to-moderate solar activity. This means tilt
angles varying from 0 to about 40 degrees.
[14] Several methods have been presented to estimate the

wavy HCS drift [Jokipii and Thomas, 1981; Burger and
Potgieter, 1989; Hattingh and Burger, 1995a], all based on
a various degree of simplification. Nevertheless, we present
here a new way to numerically calculate the HCS drift for a
wavy sheet. As the sheet has a 3-D structure, we need a way
to simulate its effect in a 2-D axisymmetric model. We do
this by studying the HCS drift at one longitude at a time and
averaging the final result over all longitudes.
[15] First, we put a GCR particle to a position (rp, qp, fp)

inside the tilt cone and numerically find its minimum
distance L0 to the sheet. A schematic view of the method
is shown in Figure 3a. Although it is complicated to find the
minimum distance to the sheet (point (r0, q0)), it is relatively
easy to find the closest point on the sheet with the same
polar angle qs = qp at the fixed longitude. Then we calculate
the sheet’s radial coordinate with equation (4), when qp and
fp are fixed. We find the particle’s minimum distance to the
sheet by scanning all the distances between the particle and

Figure 3. Heliospheric current sheet structure at a constant azimuth angle and with a 30� tilt angle.
(a) Search for the minimum distance between the particle and the sheet. Coordinates (rs, qp) and (rs

0, qp)
show the possible starting points of the scan. (rs, qp) is chosen due to smaller distance to the particle’s
position (rp, qp). (b) The drift velocity vector for a particle at position (rp, qp). vDS

0 is the total HCS drift
velocity vector, vDS

0
r and vDS0q are the radial and latitudinal components of vDS0, respectively.
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the sheet. If the particle is above (below) the sheet, the
minimum distance will be found when scanning downward
(upward) along the sheet. Once we have defined the
scanning direction, we change slightly the polar angle qs
to the direction of the scan, find the position of the sheet at
this new polar angle, and calculate the distance to the
particle. Comparing the new distance to the reference
distance, we continue this procedure until the minimum
distance L0 has been found. In a realistic 3-D geometry the
shortest way to HCS may lie off the q � r plane, and our
procedure can overestimate the minimum distance. However,
we have checked that a possible error does not exceed 1%
for r > 6 AU, 10% for 2 AU and becomes greater only in the
vicinity of the Sun (<10�5 of the heliosphere’s volume).
[16] Once we have found the minimum distance between

the particle and the sheet, we are ready to calculate the
actual drift velocity of the particle for current longitude
using the locally quasi-flat sheet approach. The direction
and magnitude of the HCS drift velocity are achieved using
the information that it is tangential to the sheet. If the
scanning direction is away from the Sun, taking the direc-
tion from the second last scanning point to the last one gives
the direction of vDS (�vDS) for qA > 0 (qA < 0) case. If the
scanning direction is toward the Sun, an inverse approach is
applied. If we now assume the sheet to be locally flat (as
guaranteed by equation (9)), with the information of par-
ticle’s Larmor radius and distance to the sheet we can apply
equation (8) and calculate the magnitude of the drift vector.
[17] The heliospheric magnetic field is bent to a spiral,

and the effective HCS drift velocity direction changes with
radial distance. The HCS drift takes place in a plane
perpendicular to the magnetic field direction. Far away
from the Sun, the spiral angle is close to 90� and the
HCS drift direction is directly toward the Sun for qA < 0.
However, in the inner heliosphere, where the spiral angle is
smaller, the azimuthal component of the drift velocity
dominates and the drift velocity toward the Sun is rather
small. We take this into account simply by multiplying the
drift velocity by sin y, where y is the spiral angle. The
corresponding velocity vector is denoted as vDS0.
[18] Finally, we need to find the radial and latitudinal

component of the drift vector (the azimuthal components of
the HCS drift does not play a role in our 2-D model).
Figure 3b shows the determination of vDS0 and its radial and
latitudinal components. We denote the angle between vDS0
and vDS0r as x. Thus the radial and latitudinal components of
vDS0 are defined as (see Figure 3b):

vDS0r ¼ cos xð ÞvDS0 ð10Þ

vDS0q ¼ sin xð ÞvDS0 : ð11Þ

[19] Now we have all the necessary information to
calculate the particle’s drift velocity at the position (rp, qp,
fp). Next we slightly change the longitude and calculate the
corresponding HCS drift velocity vector. We repeat this
procedure covering all longitudes, then sum up the radial
and latitudinal components of the drift velocity vector and
average the result.

[20] We find that the average latitudinal component of the
HCS drift velocity is negligible with respect to the radial
component. Thus we apply only the radial component of the
HCS drift velocity in our modulation model and call it here
simply the HCS drift velocity. We calculated the HCS drift
velocity inside the HCS tilt cone for particles with rigidities
between 1 GV and 100 GV, rp varying from 1 AU to the
heliospheric boundary at 100 AU, with a grid size of 1 AU
in radial and 0.1a in latitudinal direction.
[21] Figure 4 shows an example of a 9 GV and a 2 GV

proton’s drift velocity in a HCS with the tilt angle a = 2�
and 40�. Figure 4 shows that for a relatively energetic
particle (9 GV) the HCS drift velocity in the inner helio-
sphere increases with the radial distance, reaches its max-
imum at the distance of about 5–10 AU, and decreases in
the outer heliosphere. For the lower-energy particle the drift
velocity stays roughly constant with radial distance. In most
cases the drift velocity increases with latitude and reaches
maximum at the edge of the tilt cone. Interestingly, this is
not the case for relatively energetic particles with very small
tilt angles. As seen from Figure 4a, for a 9 GV particle in a
sheet with 2� tilt angle the radial dependence of the drift
velocity is rather weak at the edge of the tilt cone and strong
at equator. This results in a situation where the drift velocity
in the inner heliosphere is highest in equatorial plane and
decreases with latitude. This behavior, however, is reversed
around 30–40 AU, where the drift velocity becomes larger
for higher latitudes. When the particle energy increases, the
drift velocity in the inner heliosphere at the edge of the tilt
cone approaches the drift velocity at equator. It should be
studied further whether this exception is a real result or a
computational artifact related to the very low tilt angle. The
larger is the particle energy, the larger is also the drift
velocity relative to particle’s velocity. For a 9 GV proton in
a sheet with 2� tilt angle the maximum drift velocity is about
0.3 v at 5–10 AU distance, while for a 2 GV particle it is
only about 0.10 v. With 40� tilt angle the drift velocity is
only few percent of the particle velocity at most.

3. Basic 2-D Stochastic Simulation Model

[22] The heliosphere is essentially nonaxisymmetric at
every moment, and 3-D models are needed for detailed
studies on short timescales. On the other hand, it is usual to
study long-term cosmic ray modulation using 2-D (axisym-
metric) models, where all longitudinal effects are averaged.
In the axisymmetric case, Parker’s transport equation (equa-
tion (12)) takes the following form:

@U

@t
¼ 1

r2
@

@r
r2krr

@U

@r

� �
þ 1

r2
@

@m
1� m2
� �

kqq
@U

@m

� �

� 1

r2
@

@r
r2 Vsw þ hvDiRr

þ hvDiS0r
� 	

U
� 	

� 1

r

@

@m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

p
hvDiRq

U
� 	

þ 2

3

Vsw

r

@

@T
aTUð Þ; ð12Þ

where m = cosq, and krr = kkcos
2y + k?sin

2y and kqq = k?
are the diffusion coefficients in radial and latitudinal
direction, respectively.
[23] This transport equation can be solved by the sto-

chastic simulation method as follows. Introducing a new
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function F = r2 U, one can transform equation (12) into the
following form:

@F

@t
¼ @2

@r2
krrFð Þ � @

@r

1

r2
@ r2krrð Þ
@r

F

� �

� @

@r
Vsw þ hvDiRr

þ hvDiS0r
� 	

F
� 	

þ @2

@m2

1

r2
1� m2
� �

kqqF

� �
� @

@m
1

r2
@ 1� m2ð Þkqqð Þ

@m
F

� �

þ @

@m
1

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

p
hvDiRq

F

� �

þ @

@T

2

3

Vsw

r
aTF

� �
: ð13Þ

[24] This equation can be presented as an equivalent set
of stochastic differential equations [Gardiner, 1989]

Dr ¼ 1

r2
@

@r
r2krr

� �
Dt þ Vsw þ hvDiRr

þ hvDiS0r
� 	

Dt

þ Rn1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kqqDt

p

Dm ¼ 1

r2
@

@m
1� m2
� �

kqq
� �

Dt �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

p
r

hvDiRq
Dt

þ Rn2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

r2
1� m2ð ÞkqqDt

r

DT ¼ � 2

3

VswaT

r
Dt; ð14Þ

where Rn1 and Rn2 are normally distributed random numbers
with unit dispersion. The components of the drift velocity in
a regular heliospheric magnetic field can be derived from
equations (2) and (3) [cf. Jokipii and Levy, 1977; Burger
and Potgieter, 1989]:

hvDiRr ¼ � 2

3

Pv

A

rG cos q

sin q 1þ G2
� �2 1� 2H q� qsð Þð Þ ð15Þ

hvDiRq ¼
2

3

Pv

A

rG 2þ G2
� �
1þ G2
� �2 1� 2H q� qsð Þð Þ ð16Þ

[25] In this study we have used the following assump-
tions. The solar wind speed was taken constant at Vsw =
400 km/s. The diffusion coefficients are defined as follows
[Kóta and Jokipii, 1983]:

kjj ¼ k0K Pð Þ B0

3B
ð17Þ

k? ¼ k?ð Þ0kjj; ð18Þ

where K(P) = 1 GV, if P < 1 GV, and K(P) = P, if P � 1 GV
[e.g., Perko, 1987]. B0 = 5 nT is the mean magnetic field
strength at the Earth’s orbit, and B results from equation (3)
with jAj = 3.4 nT � AU2.
[26] A relation between the diffusion coefficients perpen-

dicular and parallel to the magnetic field is often assumed to
be linear with the proportionality coefficient (k?)0 (see
equation (18)). The value of (k?)0 is usually taken between

0.01 and 0.05 [e.g., Kóta and Jokipii, 1983; Giacalone and
Jokipii, 1999]. In this study we use (k?)0 = 0.04. Despite
such a seemingly preferable parallel diffusion, the cosmic
ray transport is mostly defined by perpendicular diffusion in
the outer heliosphere, and parallel diffusion plays a role
only in the inner heliosphere.
[27] The cosmic ray energy spectrum outside the helio-

sphere, i.e., the unmodulated spectrum (the local interstellar
spectrum, LIS) is assumed constant. The exact shape of LIS
is not well known. Here we use LIS adopted from Burger et
al. [2000] in the form parameterized by Usoskin et al.
[2005]:

JLIS Pð Þ ¼ 1:9� 104 � P�2:78

1þ 0:4866 � P�2:51
; ð19Þ

where P =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T T þ 2 � 0:938ð Þ

p
, J and T are expressed in

units of particles/(m2 sr s GeV/nucleon) and in GeV/nucleon,
respectively.
[28] The set of stochastic equations (14) was numerically

solved as the history of a quasi-particle with coordinates r
and q and kinetic energy T in subsequent small time steps D
t. Collecting large statistics (>106) of thus traced ‘‘par-
ticles,’’ we can finally obtain spatial and energy distribu-
tions of cosmic rays. The heliospheric spherical boundary
was placed at 100 AU, and test particles were injected at the
distance of 120 AU with the initial kinetic energy T
distributed according to JLIS (see equation (19)). Particle
tracing was done by calculating the new coordinates and
energy (see equation (14)) of the particle after a time step D
t, which was taken to depend on the heliodistance as D t /
r2 to reduce the computation time. The particle’s history was
terminated if it left the heliosphere or if its rigidity de-
creased below 1 GV. Some simulation results are presented
in the following section.

4. Simulation Results

4.1. Flat Current Sheet

[29] Let us first discuss the case of minimum solar
activity when the heliospheric current sheet is very flat
and modulation quite weak. We set the diffusion coefficient
to k0 = 8.8 � 10�7 AU2s�1 GV�1 and applied the flat HCS
of equation (8). We calculated the modulated cosmic ray
spectrum both for qA < 0 and qA > 0 cases, as well as for
the case without any drifts. The results are shown in
Figure 5a. The spectrum in the qA < 0 case is less
modulated than for qA > 0 or in the no-drift case, and the
no-drift spectrum lies between qA < 0 and qA > 0.

4.2. Wavy Current Sheet

[30] First, we tested our way to calculate the wavy current
sheet drift discussed in section 2.2. Figure 5b shows
simulated spectra with k0 = 3.0 � 10�7 AU2 s�1 GV�1

(which in no-drift case corresponds to relatively low mod-
ulation conditions), both for qA < 0 and qA > 0, applying
the flat sheet approximation and the wavy current sheet
approximation with different tilt angles. We see that the
spectra for the flat sheet case and the a = 2� case are fairly
close to each other with both polarities, as one would
expect. For tilt angles a = 25� and 40�, the spectra for
qA < 0 are less modulated than for qA > 0. In qA < 0 case,
modulation is weaker for a = 2� than for a = 25� and 40�,
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which are very close to each other. This implies a tilt angle
dependence (for relatively small tilt angles) of the GCR
intensity at the Earth’s orbit in qA < 0 conditions. This
feature is observed in neutron monitor data as peak-like
profiles of the GCR intensity around solar activity minima
for qA < 0. Our results also suggest that the HCS effect
quickly decreases with increasing a and approaches the no-
drift case, which is in agreement with other studies [see,
e.g., Dorman, 2006, and references therein]. We note that
our simulation results are consistent with the features
observed in neutron monitor data. The tilt angle dependence
of modulation is weak for small values of a during qA > 0
period, in agreement with a flat top and fast ascend/descend
of a qA > 0 cycle in NM data. The tilt angle dependence is
stronger for qA < 0 periods, in agreement with the sharp
tops of the corresponding cycles in NM data. On the other
hand, the overall stronger modulation in qA > 0 period
shown by our results is different from earlier expectations
[e.g., Dorman, 2006, and references therein], and this needs
further, more detailed, investigation.

4.3. Streaming of GCR Particles

[31] Using stochastic simulation, one can study streaming
patterns of cosmic rays in the heliosphere. In order to do
this, we divided the 2-D heliosphere into cells of equal size
of 4 AU � 4 AU. We studied the cases of a = 2� and 40�,
and the two polarities. We traced a large set of particles with
initial rigidity of P = 2 GV (keeping diffusion coefficient at
k0 = 3.0 � 10�7 AU2s�1 GV�1). Each time a particle left a
cell, we recorded its ‘‘velocity’’ components vx = Dx/Dt
and vy = Dy/Dt. Then the streaming pattern was computed
by averaging over the whole set of vx and vy in each cell.
This averaged streaming component is shown in Figure 6.

One can see that the streaming patterns are highly organized
but quite different for qA < 0 and qA > 0. In qA > 0
conditions (see Figures 6a and 6c) the particle streaming
around the HCS is preferably oriented equatorward due to
the gradient-curvature drift. In a = 2� case the drift along
the HCS is quite strong, and the particles preferably escape
from the heliosphere along the sheet. In the a = 40� case the
HCS drift velocity is quite small as discussed in section 2.2.
Thus the HCS effect is weak and the gradient-curvature drift
seems to dominate even at low latitudes. This could explain
why the modulation decreases in qA > 0 period with
increasing tilt angle.
[32] In qA < 0 conditions (see Figures 6b and 6d) the

gradient-curvature drift causes poleward streaming of par-
ticles, especially at high latitudes. At equatorial regions the
HCS drift dominates in a = 2� case and the particles are
effectively driven toward the Sun. However, for a = 40�
only a small oppositely oriented HCS effect can be seen due
to the low HCS drift velocity.

5. Conclusions

[33] We have presented a 2-D, quasi-steady state model of
GCR transport in the heliosphere, based on the stochastic
simulation technique. A special emphasis is paid to the
effect of drifts on the GCR transport. We have first
discussed an analytical approach to the flat HCS drift and
then presented a detailed numerical recipe of computing
wavy HCS effect, calculating the HCS drift velocity at a
fixed position of a GCR particle with a rigidity P and HCS
tilt angle a. The local HCS drift velocity at a fixed longitude
is averaged over all longitudes. The drift velocity is found to
increase with particle’s energy and to decrease with increas-

Figure 5. Simulated GCR spectra in case of (a) low solar modulation with flat HCS: LIS (thick black
line), qA < 0 (blue line), qA >0 (red line), and no-drift case (grey line) (b) relatively low solar modulation
with flat and wavy HCS: LIS(thick black line), qA < 0 with (1) flat HCS (blue dots), (2) wavy HCS with
a = 2� (solid blue line), (3) a = 25� (dashed blue line), (4) a = 40� (dotted blue line), and qA >0 with (1)
flat HCS (red dots), (2) wavy HCS with a = 2� (solid red line), (3) a = 25� (dashed red line), (4) a = 40�
(dotted red line), and no-drift case(grey line).
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ing tilt angle. In most cases, the drift velocity also increases
with increasing latitude. An exception to this is found for
very low tilt angles (a = 2�) for relatively energetic
particles, when the drift velocity in the inner heliosphere
is somewhat larger at lower latitudes, but this may be related
to the statistical uncertainty of the simulations. In the radial
direction, the HCS drift velocity for energetic particles
increases first with increasing distance from the Sun, reach-
ing its maximum around 5–10 AU, and then gradually
decreases. For low-energy particles the drift velocity stays
roughly constant with radial distance.
[34] We have applied both the flat and wavy current sheet

in the full 2-D model. We have simulated the effect of HCS
drift in a wide range of parameters: from low to medium
modulation and from flat to wavy HCS. Our results are
consistent with observations and verify that GCR modula-

tion is stronger for qA > 0. For qA < 0, the HCS drift
advances the particle transport into the inner heliosphere,
decreasing modulation with respect to nondrift case and
especially to qA > 0 case. Modulation increases with the tilt
angle for qA < 0 to some extent, but then the spectra seem
to approach the nondrift case, which serves as an upper limit
of modulation for qA < 0. The increase of modulation with
the tilt angle for qA < 0 is in agreement with earlier studies
[see, e.g., Kóta and Jokipii, 1983; Burger and Potgieter,
1989]. For qA > 0 conditions increasing tilt angle dimin-
ishes the modulation slightly.
[35] We also studied streaming patterns of GCR particles

of 2 GV rigidity for low-to-moderate modulation conditions.
In qA > 0 case, the main pattern is that for a flat HCS the
particles are driven by the gradient-curvature drift equator-
ward and away from the Sun by the HCS drift. For qA < 0,

Figure 6. Streaming patterns of 2 GV particles in relatively low modulation conditions (k0 = 3.0 � 10�7

AU2s�1GV�1) in (a) qA > 0 period with a = 2�, (b) qA < 0 period with a = 2�, (c) qA > 0 period
with a = 40�, (d) qA < 0 period with a = 40�.
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the particles are driven along the HCS toward the Sun and
poleward by the gradient-curvature drift. With large tilt
angle, the HCS effect is minor compared to the gradient-
curvature drift, which dominates the whole heliosphere. The
streaming patterns are in qualitative agreement with the
common idea of GCR transport that in qA < 0 period
particles drift toward the poles in off-equatorial regions and
toward the Sun in ecliptic plane, and the situation is
reversed in qA > 0 period [e.g., Jokipii and Thomas, 1981].
[36] More detailed calculations are needed to study, e.g.,

the effect of the applied concept of ‘‘drift region,’’ and the
effect of the choice of (k?)0 and k0. Another step could be
to use a more realistic latitudinal dependence of the solar
wind velocity, which was taken to be constant. An
important application of the model is to compare the model
results to the actual cosmic ray measurements, i.e., to the
neutron monitor count rates. This requires, however,
lengthly calculations where the diffusion coefficient (k?)0
and tilt angle a are changed as a function of time.
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