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Abstract. Developing the idea of Ruzmaikin (1997, 1998), we have constructed a model of sunspot
production using three components of solar magnetic field: the 22-year dynamo field, a weak con-
stant relic field, and a random field. This model can reproduce the main features of sunspot activity
throughout the 400-year period of direct solar observations, including two different sunspot activity
modes, the present, normal sunspot activity and the Maunder minimum. The two sunspot activity
modes could be modeled by only changing the level of the dynamo field while keeping the other two
components constant. We discuss the role of the three components and how their relative importance
changes between normal activity and great minimum times. We found that the relic field must be
about 3–10% of the dynamo field in normal activity times. Also, we find that the dynamo field
during the Maunder minimum was small but non-zero, being suppressed typically by an order of
magnitude with respect to its value during normal activity times.

1. Introduction

Time evolution of sunspot activity (SA) is of great interest for solar physics since
it reflects processes in the solar convection zone. The main feature of SA is its
11-year cycle due to the action of the dynamo mechanism. The 11-year cyclicity is
modulated by long-term effects, such as the secular Gleissberg cycle (for a review
see, e.g., Wilson, 1994; Vitinsky, 1965; Vitinsky, Kopecký, and Kuklin, 1986).
Sometimes sunspot activity is dramatically suppressed, leading to a so-called great
minimum. The most recent great minimum was the Maunder minimum (MM) in
1645–1715 when sunspot activity almost vanished (Eddy, 1976).

Earlier it was common to describe SA as a multi-harmonic process with several
fundamental harmonics superposed with each other (see, e.g., Sonett, 1983; Vitin-
sky, 1965; Vitinsky, Kopecký, and Kuklin, 1986). On the other hand, SA series
also contains a random component which is larger, e.g., than the observational
uncertainties. Since the early 1990s, several authors have studied solar activity as
an example of low-dimensional deterministic chaos described by a strange attrac-
tor (see, e.g., Ostryakov and Usoskin, 1990; Mundt, Maguire, and Chase, 1991;
Rozelot, 1995). This approach has been criticized because the analyzed data set is

∗On leave from Ioffe Physical Technical Institute, 194021 St. Petersburg, Russia.

Solar Physics199: 187–199, 2001.
© 2001Kluwer Academic Publishers. Printed in the Netherlands.



188 I. USOSKIN, K. MURSULA AND G. KOVALTSOV

Figure 1.Monthly group sunspot numbers.

too short (Carbonell, Oliver, and Ballester, 1993, 1994) and disturbed by filtering
(Price, Prichard, and Hogenson, 1992). While the majority of earlier studies have
concentrated on either the regular or the random component of SA, some stud-
ies have included both components (e.g., Sonett, 1982; Ruzmaikin, 1997, 1998).
However, only the normal sunspot activity level is studied in these papers. On
the other hand, it has been suggested that the dynamo can be in a quite different
mode during the great minima than during times of normal SA level (see, e.g.,
Sokoloff and Nesme-Ribes, 1994; Schmitt, Schüssler, and Ferriz-Mas, 1996, and
references therein). Correspondingly, the relation between the regular and random
components of SA can be very different during great minima and normal activity
times.

In this paper we present a unified model of sunspot production during the two
different modes of sunspot activity level. The magnetic field in the bottom of the
convection zone is considered to be a superposition of a regular and a random
component, and sunspots are produced if this total field exceeds a buoyancy thresh-
old (Ruzmaikin, 1997, 1998). In addition to the normal dynamo field, the regular
component in our model also includes a constant magnetic field, corresponding
to the relic solar magnetic field (Cowling, 1945; Sonett, 1982; Levy and Boyer,
1982; Pudovkin and Benevolenskaya, 1984) recently found in the persistent 22-
year cyclicity in SA (Mursula, Usoskin, and Kovaltsov, 2001). The relic field can,
due to the amplification by the dynamo mechanism, play a significant role in
sunspot occurrence (Levy and Boyer, 1982; Boyer and Levy, 1984; Boruta, 1996).
Our model can reproduce the main features of SA both during great minima and
normal activity times. In Section 2 we review the basic features of SA during
the Maunder minimum and normal activity times. In Section 3 we describe the
details of the model and simulations. Section 4 presents the simulation results
and Section 5 discuss the results obtained. In the final Section 6 we present our
conclusions.
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Figure 2.Days with sunspots during the deep Maunder minimum. (a) Actual observations according
to the GSN series. (b) A sample of simulation for case I withB0 = 0.05,σ0 = 3,A11= 0.05. (c) A
sample of simulation for case II withB0 = 0.05,σ0 = 3,A11= 0.1

2. Properties of Sunspot Activity

As the SA index we use the new group sunspot number (GSN) series (Hoyt and
Schatten, 1998) which covers the period since 1610 and, thus, includes the full MM
period. Moreover, this series is a more correct and homogeneous SA proxy for the
period before 1850 than the Wolf number series (Hoyt and Schatten, 1998; Wilson,
1998; Letfus, 1999). The monthly GSN series is shown in Figure 1. As seen there,
the behavior of SA during MM was significantly different from that during the rest
of the interval covered by GSN series which depicts a clear 11-year cyclicity.

2.1. MAUNDER MINIMUM

During the Maunder minimum more than 95% of days were covered with sunspot
observations (Hoyt and Schatten, 1996). However, sunspots were registered in less
than 2% of days during that period. Because of the sparse and seemingly sporadic
occurrence of sunspots, traditional methods of time series analysis are not appropri-
ate for this period (Fricket al., 1997; Mordvinov and Kuklin, 1999). Recently we
performed, using a special method, a detailed study of sunspot occurrence during
MM (Usoskin, Mursula, and Kovaltsov, 2000). Since the exact daily GSN values
are small and not very accurate during MM (Hoyt and Schatten, 1996), we only
used the information whether a sunspot was reported for a certain day or not.
Days with observed sunspots during the deep MM in 1645–1700 are shown in
Figure 2(a) as vertical bars. As discussed in more detail by Usoskin, Mursula, and
Kovaltsov (2001), sunspot occurrence was grouped into two major intervals, (1652
–1662) and (1672–1689), with a high statistical significance. The ‘mass centers’
of these intervals were in 1658 and 1679–1680, respectively. These mass centers
together with the first SA maximum after the deep MM (1705) and the last max-
imum before MM (1639–1640) imply a roughly 22-year variation of SA during
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MM (Usoskin, Mursula, and Kovaltsov, 2001). (Despite this dominant feature, a
sub-dominant 11-year cycle in SA may have existed, especially in the second half
of MM (see also Nesme-Ribes, 1993).)

Thus, we can summarize the two main features of SA during the deep MM as
follows:

(1) Sunspots occurred seldom, approximately on 2% of days.
(2) Daily sunspot occurrence was grouped into two long intervals, in 1652–

1662 and 1672–1689, with hardly any activity outside these intervals in 1645–
1652, 1662–1672, and 1689–1699.

2.2. NORMAL SOLAR ACTIVITY

The main feature of SA during normal activity times is the 11-year Schwabe cycle.
One important parameter of SA during these times is the ratio between SA max-
ima and minima attained during one cycle. Using the standard 12-month running
average, one can find that this maximum to minimum ratio in the GSN series varies
from about 10 to 200 for the solar cycles after the Dalton minimum in the beginning
of the 19th century.

Recently we have shown (Mursula, Usoskin, and Kovaltsov, 2001) that a persis-
tent 22-year cyclicity exists in SA with a roughly constant amplitude of about 10%
of the modern SA level. This 22-year cyclicity is the underlying feature behind the
well-known empirical Gnevyshev–Ohl (G–O) rule (Gnevyshev and Ohl, 1948;
Wilson, 1988; Storini and Sýkora, 1997) according to which the sum of sunspot
numbers over an odd cycle exceeds that of the preceding even cycle. The 22-year
cyclicity in sunspot activity is naturally explained by the action of the 22-year solar
dynamo cycle in the presence of a weak solar relic field (see Mursula, Usoskin, and
Kovaltsov, 2001, and references therein).

In order to study the random component of SA during normal SA level, we first
removed the 31-month running average,〈R〉i , from the raw monthly GSN series,
Ri. The residualRi−〈R〉i has a significantly asymmetric distribution, in agreement
with the fact that the noise in SA series is ‘colored’ or correlated (e.g., Oliver and
Ballester, 1996; Fricket al., 1997; Ruzmaikin, 1998), i.e., the variance of the noise
depends on the current level of SA. Therefore, we study the normalized residual:

ri = Ri − 〈R〉i
〈R〉i . (1)

The normalized residual is shown in Figure 3(a) for 1849–1996. Figure 3(b) shows
the histogram of this normalized residual. While the distribution is nearly Gaussian
around zero, there are some side effects in the distribution at|ri | > 0.8. The wings
of the distribution are not symmetric sinceri ≥ −1 by definition (Equation (1))
while there is no upper limit forri . Moreover, values ofRi = 0 are over-represented
in SA, especially around SA minima, leading to enhanced probability ofri ≈ −1
with respect to the Gaussian shape and to the small negative mean of the distribu-
tion. The fit of the histogram distribution in the range of [−0.9; 0.9] by a Gaussian
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Figure 3. (a) The normalized residual between the raw and smoothed monthly GSN series for the
period 1849–1996. (b) Distribution of the residual with the best fit Gaussian (mean= −0.05,
standard deviation≈ 0.3).

curve yields the mean of−0.05 and the standard deviation of about 0.3. Theχ2-
test suggests that the distribution is Gaussian with the significance level of 78%
(χ2

6 = 3.2).
Thus, we can summarize the three main features of SA during normal activity

times as follows:
(1) The 11-year SA cycle is the dominant feature. The ratio between the 12-

month smoothed sunspot maxima and minima during one cycle is 10–200.
(2) There is a persistent, roughly constant 22-year cycle in sunspot activity at

about a 10% level of the present SA.
(3) Monthly GSN values fluctuate randomly around the running average form-

ing a correlated noise. The normalized noise has nearly Gaussian distribution.

3. The Simulation Model

Following Ruzmaikin (1997, 1998), we adopt the condition that if the total mag-
netic field in the dynamo layer of the convection zone exceeds a buoyancy thresh-
old, sunspots will occur. Ruzmaikin (1997) considered the total field consisting of
two parts:

Btot = Breg+ b, (2)

where the regularBreg field only includes the 11-year oscillating, dynamo-related
field B11, andb is the randomly fluctuating field generated by random motions
(Ruzmaikin, 1998, and references therein). While the buoyancy threshold at the
bottom of the convection zone is supposed to be about 105 G (see, e.g., Schüssler
et al., 1994; Caligari, Moreno-Insertis, and Schüssler, 1995), estimates of the mean
field in that region vary from 104 to ≤ 105 G (e.g., Zeldovich, Ruzmaikin, and
Sokoloff, 1983; Schüssleret al., 1994; Ruzmaikin, 1998). This implies that the
regular field in the mean-fieldα − � dynamo theories is below the threshold, and
therefore the randomb-field is important in order to exceed the threshold.
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In view of including the relic field in our model, we have to retain the direction
of theB11 field. Therefore we take theB11 field in the form of a 22-year sinusoid
(Hale cycle) with amplitudeA11 (e.g., Sonett, 1982; Bracewell, 1986):

B11(t) = A11 sin(πt/T11), (3)

whereT11 = 11 years. Accordingly, the regular magnetic field in our model is

Breg= B11+ B0, (4)

whereB0 is the constant relic magnetic field.
We have used the two different types of randomly fluctuating field appearing in

literature with different probability distribution functionsp(b). Ruzmaikin (1998)
suggested that the distribution function of the solar random field might have an
exponential tail:

p(b) ∼ exp

(−|b|
σ

)
. (5)

However, usually, the normal (Gaussian) distribution of random values is used
when modeling physical processes (see, e.g., Sonett, 1983):

p(b) ∼ exp

(−b2

2σ 2

)
. (6)

Since arguments have been given in favor of both models, we will use both distrib-
utions in our simulations, calling them case I (exponential distribution) and case II
(Gaussian distribution), respectively. Since the random component of SA is due to
correlated noise, the variance of the noiseσ (t) is assumed to be proportional to the
regular component of the field at each time (Ostryakov and Usoskin, 1990a):

σ (t) = σo|Breg(t)|, (7)

whereBreg is given according to Equation (4). We also note that since the random
field can attain both negative and positive values in our model, the corresponding
distribution functions are normalized to one from minus to plus infinity.

4. Simulation Results

Using Equations (2)–(7), we numerically simulated SA separately for normal solar
activity and for the great minimum. For each dayt , the value of the random fieldb
was generated by a pseudo-random number generator having either the exponential
(Equation (5)) or the Gaussian (Equation (6)) distribution withσ (t) defined by
Equation (7). Adding theb-field to the corresponding regular field component, the
total Btot for one day was obtained (Ruzmaikin, 1997). The absolute value of the
simulated total field,|Btot|, was then compared with the thresholdBth. If the total
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Figure 4.Area of possible values of model parametersA11 vs.σ0 for the Maunder minimum. Value
of B0 is fixed (as shown in boxes). (a) and (b) are for case I and case II, respectively.Big solid circles
denote values of parameters used for sample simulations shown in Figure 2.

field exceeded the threshold, sunspots occurred on that day, and the daily sunspot
number was proportional to(|Btot| − Bth). Field values are in arbitrary units with
the value of the threshold,Bth, chosen to be unity. Accordingly, there are three
independent parameters in the model:A11, B0, andσ0.

4.1. THE DEEPMAUNDER MINIMUM

During the deep MM, the 11-year SA cycle is found to be very weak (see Sec-
tion 2.1). Accordingly, we assume thatA11 was small (but non-zero) during this
time. A sample of simulated sunspot occurrence is shown in Figure 2(b) for case I
and in Figure 2(c) for case II. These samples show a time behavior which is rather
similar to that of the actual sunspot occurrence. We have made 104 simulation sets
of 20088 days (simulations) each, corresponding to the number of days in the deep
MM in 1645–1699.

In the following we try to find the range of the three model parameters which
satisfies the two main features of SA during the deep MM (see Section 2.1), now
given as the following two constraints:

Constraint I. There were 369 sunspot days out of the 20088 days of the deep
MM. The number of simulated sunspot days was constrained to be 369±57 (99.7%
confidence level).

Constraint II. There were long spotless periods in 1645–1652, 1662–1672, and
1690–1699 (see Figure 2(a)). We require that the sunspot occurrence rate during
the long spotless periods in 1645–1652, 1662–1672, and 1690–1699 (see Fig-
ure 2(a)) is significantly lower (with significance level higher than 99.9%) than
during other periods of the deep MM. Not more than one sunspot day per year is
allowed in these intervals.
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Figure 5.Area of possible values of model parametersσ0 vs.B0 for case I and case II (panels (a)
and (b)), respectively. The allowed area of the parameter values is limited by thesolid curvefor the
normal SA times, and by thedotted curvefor the Maunder minimum.

Using these constraints we found areas of model parameter values which are
shown in Figures 4(a) and 5(a) for case I and in Figures 4(b) and 5(b) for case II.
Figure 4 presents the relationship between the amplitudeA11 and theσ0 parameter
for several values of the relic fieldB0. One can see that, for a fixedB0, the allowed
area is prolonged and very narrow in both cases, reflecting the approximate inverse
relation between the two parameters. This is mainly due to the effect of constraint I.
The area of the possible values ofσ0 andB0 (irrespective of the value ofA11) is
limited by the two dotted lines in Figure 5.

4.2. NORMAL SUNSPOT ACTIVITY TIMES

Some samples of simulated SA for normal activity times are shown in Figures 6(b)
and 6(c) for case I and case II, respectively. There is a good overall similarity with
the actual GSN data (Figure 6(a)) for the period of fairly constant SA level (solar
cycles 9–13). Contrary to real cycles, the simulated cycles are symmetric since
we assumed a sinusoidal shape for the underlying 11-year cycle (Equation (3)).
We simulated 1000 11-year solar cycles for each of the two cases. The length of
simulated cycles varied from 9.5 to 12.5 years, and the cycle amplitude changed by
a factor of two, in good agreement with the real sunspot cycles. In accordance with
the observed 22-year variation, the G–O rule was found to be valid throughout the
entire simulated series.

Next we try to find the parameter range which satisfies the three main features
of SA during normal activity times (Section 2.2.) which are now given as the
following two constraints:

Constraint I (feature 1 of Section 2.2) limits the ratio of the (12-month averaged)
sunspot maxima and minima of a cycle to within 10–200.
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Figure 6. Sunspot activity: (a) actual monthly group sunspot numbers for the period of roughly
constant SA level; (b) a sample of the monthly simulated SA for case I withA11 = 0.6,B0 = 0.05,
σ0 = 3; (c) a sample of the monthly simulated SA for case II withA11= 0.7,B0 = 0.05,σo03.

Figure 7.Area of possible values of model parametersA11 vs. σ0 for the normal sunspot activity
times. Value ofB0 is fixed (as shown in boxes). (a) and (b) are for case I and case II, respectively.
Big dotsdenote values of parameters used for sample simulations shown in Figure 6.
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Constraint II (feature 3 of Section 2.2) requires that the odd cycles are 10–30%
more intense than even cycles. Note that the ratio between the 22-year variation
in cycle intensity and the average intensity level is about 20%± 10% (Mursula,
Usoskin, and Kovaltsov, 2001).

Feature 2 of Section 2.2 was not a constraint but rather was adopted within the
method. (See discussion later in this section). The relation betweenA11 andσ0

for fixedB0 is shown in Figures 7(a) and 7(b) for case I and case II, respectively.
The two parameters are in rough inverse relation, in analogy with the results for
the deep MM period (see Figure 4). However, the area is now wider because no
constraint was given to the SA cycle amplitude, contrary to MM. The area of the
possible values ofσ0 andB0 (irrespective of the value ofA11) is limited by the two
solid lines in Figure 5.

Finally, we smoothed the simulated sunspot series and studied the monthly
residual in the same way as done in Section 2.2. The normalized residuals for sam-
ples shown in Figures 6(b) and 6(c) appear to have a Gaussian shape for both case I
and case II with roughly zero means (−0.03 and−0.02) and standard deviations of
about 0.26 and 0.25, respectively. These parameters are close to those obtained for
the actual GSN series.

5. Discussion

As seen in Figures 2 and 6, our model can reproduce the time evolution of SA
during both great minima and normal activity times. The range of possible values
of B0 andσ0 (Figure 5) is essentially similar for these two very different modes
of SA. It is important to note that the model can reproduce SA behavior for the
two modes with the same values ofB0 andσ0, only changing the amplitude of the
11-year cycle. This implies that the dynamo can be significantly suppressed during
great minima while both the relic field and random component remain constant.
Figure 5 also shows that the value ofσ0 must be larger than about one in both
cases. This corresponds to the fact that the fluctuating field is necessary in order
to exceed the buoyancy threshold within the assumption of a regular field being
below the threshold (see Section 3).

We note that both the exponential (case I) and the Gaussian (case II) distrib-
utions of the fluctuating field can reproduce the time behavior of SA. Moreover,
areas of possible values of model parameters are very similar for the two cases in
both modes of sunspot activity (compare panels (a) and (b) in Figures 4, 5, and 7).
However, the exponential distribution may be slightly more suitable for MM since
it produces a wider spread of sunspot days around the 22-year maxima, in better
accordance with observations (see Figure 2). The fact that measures of randomness
of the simulated series are similar to those of the actual GSN data, suggests that we
have correctly simulated the fluctuating field.
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Figure 8. Area of possible values of model parametersA11 vs.B0 for cases I and II ((a) and (b)),
respectively. The allowed area of the parameter values is limited by thesolid curvefor the normal
SA times, and by thedotted curvefor the Maunder minimum.Big solid circlesdenote parameters
used for sample simulations in Figures 2 and 6.

We found in Figure 7 that the relic field is constrained to be roughly below 0.1
within the model assumptions. In order to better study the range of allowed values
of B0 we have shown the relation betweenA11 andB0 in Figure 8. We can see that
there is a lower limit forB0 of about 0.01 in case I and 0.015 in case II. We note
that a lower limit of the same order of magnitude is found from constraints of both
modes of sunspot activity. Accordingly, the existence of the relic field is necessary
in both modes of SA in order to satisfy the model constraints. Since the constraints
are based on rigorous observational facts, this result gives further evidence for the
existence of the relic field. Moreover, we obtain a new estimate for the magnitude
of the relic field of about 1–10% of the threshold field. It is also interesting to note
that the two cases of random field yield a roughly similar range for the value of the
relic field.

Figure 8 also shows that the amplitude of the dynamo field,A11, can not be less
than about 20% of the threshold during normal SA times. We also find that the
value ofA11 during MM is limited to within 0.02–0.2 in case I and 0.02–0.3 in
case II. The fact that the areas of possible parameters in Figure 8 for the two modes
of SA do not overlap implies that the dynamo was really in different modes during
MM and in ‘normal’ SA times. The lower limit onA11 during MM implies that the
dynamo has to operate at some level even during the lowest sunspot activity times.
However, it was suppressed during the deep MM by typically a factor of 10-30
with respect to the normal SA mode. Also, according to Figure 8, the upper bound
on the relic field amplitudeB0 is roughly linearly dependent on the value ofA11

for normal activity times being roughly 10% of the dynamo field.



198 I. USOSKIN, K. MURSULA AND G. KOVALTSOV

6. Conclusions

We have shown that the main features of sunspot activity throughout the entire
period of direct solar observations, including two different sunspot activity modes
(‘normal’ sunspot activity and great minimum times), can be reproduced by a sim-
ple model consisting of the 22-year dynamo field, a weak constant relic field and a
random field. The two SA modes could be modeled by only changing the level of
the dynamo field while keeping the other two parameters (relic field amplitude and
variance of random field) constant. We have studied the role of the three compo-
nents in sunspot production and discussed how their relative importance changes
between normal activity times and great minima. We found that, in order to explain
the observed level of 22-year cyclicity in sunspot activity (Mursula, Usoskin, and
Kovaltsov, 2001), the relic field must be about 3–10% of the dynamo field in nor-
mal SA times. The possibility of such a relic field was first shown theoretically by
Cowling (1945), then discussed, e.g., by Sonett (1982), Levy and Boyer (1982), Pu-
dovkin and Benevolenskaya (1984), Bravo and Stewart (1995), and Boruta (1996).
Also, we find that the dynamo field during the Maunder minimum was small but
non-zero, being suppressed typically by an order of magnitude with respect to its
value during normal activity times. Moreover, we note that the obtained results are
only slightly different between the two assumptions on the nature of the random
field.
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