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Abstract

Case study is presented for three Forbush decreases in 2004–2005, using cosmic ray data from ground-based detectors – neutron mon-
itors and a muon detector. One of them was a typical event (September 2005), while two other were quite unusual (November 2004 and
January 2005). Two unusual features, not expected from the standard theory, are revealed: (1) the recovery time of a Forbush decrease
can strongly depend on the energy; (2) an over-recovery is observed in the most energetic cosmic ray data (muon detector). A simple
scenario is suggested for the observed phenomenon.
� 2007 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Forbush decrease (FD) is a transient depression in the
galactic cosmic ray (CR) intensity which is typically char-
acterized by a sudden onset, reaching a minimum within
about a day, followed by a more gradual recovery phase
typically lasting for several days. The magnitude of FD
varies from a few percent up to 25% in the neutron monitor
energy range. FDs are usually caused by transient inter-
planetary events, which are related to coronal mass ejec-
tions. Main properties of FD are described, e.g., in
recently review by Cane (2000). Here, we study isolated
FDs produced by transient perturbation locally in the inner
heliosphere, in contrast to step-like decreases caused by
diffusive barriers (GMIRs) propagating in the outer
heliosphere (see, e.g., Wibberenz et al., 1998).

Here, we are interested in the gradual recovery of FD.
Its shape is close to an exponent in time and is character-
ized by the recovery time, s (Lockwood et al., 1986). The

time profile of the CR intensity I, may be approximated
by the following function

dI � I0 � I
I0

¼ A � exp
t0 � t

s

� �
; ð1Þ

where I0 is the pre-event level and t0 is the time when the
recovery starts. This is illustrated in Fig. 1. The recovery
time is about 5 days on average but may vary for individual
events from 3 to 10 days. While the magnitude A of FD
depends on the local geomagnetic rigidity cutoff of a
detector (it is smaller for equatorial stations), the recovery
time is expected to be similar for all detectors observing the
same event, implying that it does not depend on CR
energy. This fact has been reported by Lockwood et al.
(1986) who analyzed a number of FDs observed by the
world network of neutron monitors (NMs) during 1958–
1984. Similar conclusion follows from the results by
Mulder and Moraal (1986) (see Fig. 3 therein) based on a
superposed epoch analysis of FDs. We are not aware of
more recent experimental investigations of the energy
(in)dependence of the FD recovery time. A recent empirical
study of the dependence of the FD recovery time on the
parameters of interplanetary disturbances (Penna and
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Quillen, 2005) is based on data from a single NM and thus
gives no information on the energy dependence. One ex-
pects the recovery time being independent on the energy
of CR particles because it mainly depends on the decay
of interplanetary disturbance and only secondly on the
transport parameters of particles (Lockwood et al., 1986).
This idea is consistent with the model computations (e.g.,
le Roux and Potgieter, 1991). On the other hand, Mulder
and Moraal (1986) have shown, using the superposed
epoch analysis, that the FD recovery time is related to
the heliospheric magnetic field polarity. This result has
been later confirmed by Rana et al. (1996) and Singh and
Badruddin (2006). The dependence of s on the polarity is
explained by the effect of CR particles drift in the helio-
sphere, that implicitly depends on the energy of CR. This
gives a hint at a possible relation between CR energy and
the FD recovery time s.

Here, we present a thorough analysis of the recovery
time for three Forbush decreases during 2004–2005, which
were recorded by a plastic scintillator muon detector
(called MUG, see Section 2) as well as by the world
network of NM (see Table 1).

2. Response of ground-based detectors

A neutron monitor is a standard ground-based cosmic
ray detector with low pressure proportional counters filled

with BF3 enriched with the 10B isotope. There are two basic
types of NM: NM-64 and IGY detectors, both are stan-
dardized. NM responds to the nucleonic (mostly superther-
mal neutrons and partly protons) component of the
atmospheric cosmic-ray induced cascade. A specific yield
function (detector’s response per unit flux of primary cos-
mic rays with fixed energy E) of a sea-level NM-64 is shown
in Fig. 2. This yield function Y(E) was computed by Clem
and Dorman (2000) using simulations of the full develop-
ment of the atmospheric nucleonic cascade as well as the
detector’s own response function. On the other hand,
muon detectors are not standardized and have different
designs. Here, we analyze data from a plastic scintillator
muon detector (called MUG), designed at the University
of Oulu and located in Pyhäsalmi (63�39 0N 26�02 0E, Cen-
tral Finland) on the ground level (Jämsén et al., 2001; Enq-
vist et al., 2005). The MUG experiment consists of two
detectors: one at the ground level, whose data we use here,
and another at 90 m underground (about 250 mwe). We do
not consider here the latter one since FD cannot be sepa-
rated over the statistical fluctuations of count rate at this
depth. In order to calculate the yield function of the
MUG we performed a full Monte-Carlo simulation of
the cosmic-ray induced cascade in the atmosphere, with
particular emphasis on the muon component. The simula-
tion was done using the CORSIKA tool (Heck et al., 1998),
specially developed for cosmic ray cascades in the atmo-
sphere. Here we assume that the MUG detector detects
(with equal efficiency) all muons which hit the detector.
The resultant yield function is shown in Fig. 2a. One can
see that the muon detector is sensitive to much higher ener-
gies of CR than a neutron monitor. However, in order to
evaluate the actual sensitivity of a detector to CR one
needs to account also for the rapidly decreasing energy
spectrum of CR. Therefore, we computed also the differen-
tial response function F of the two detectors, which is a
product of the yield function Y and the differential energy
spectrum of CR J:

F ðE; x;/Þ ¼ JðE;/Þ � Y ðE; xÞ; ð2Þ

where E is the CR kinetic energy, x is the atmospheric depth
in the instrument location, and / is the parameter defining
the solar modulation of the CR spectrum (e.g., Caballero-
Lopez and Moraal, 2004; Usoskin et al., 2005). The differen-
tial response function is shown, for both detectors, in Fig. 2b
for the medium solar activity (/ = 500 MV). The count rate
of a detector is defined by an integral of the differential re-
sponse function over kinetic energy E:

Qðx;/Þ ¼
Z 1

Ec

F ðE; x;/Þ � dE; ð3Þ

where Ec is the kinetic energy corresponding to the local
geomagnetic rigidity cutoff Pc.

We note that using Ec or the energy corresponding to
the peak of F as a characteristic energy of the detector is
not appropriate. Instead, it is common to use the so-called
effective energy Eeff (Alanko et al., 2003) or the median

Table 1
Detectors and values of their geomagnetic rigidity cutoff Pc and median
energy EM

Detector Pc (GV) EM (GeV)

MUG 1 55
Haleakala NM 13 27
ESO NM 8 17
Alma-Ata NM 6.6 15
Rome NM 6.2 14
Lomnicky Stit NM 3 12
Oulu NM 0.8 10
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Fig. 1. Forbush decrease of November 2004 according to the Oulu NM
data. The dotted line depicts the pre-event level I0, and the thick line – the
best fit exponential recovery with s = 5.6 days (see Eq. (1)).
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energy EM (e.g., Lockwood and Webber, 1996; Ahluwalia
and Dorman, 1997). In this paper, we use the latter concept
which is defined as the energy that halves the count rate Q

in Eq. (3). Approximate values of EM for the detectors used
in this study are listed in Table 1.

3. Forbush decrease case studies

Here, we study three isolated strong FDs during 2004–
2005. These events have been selected using the following
criteria:

� The event was recorded by MUG in a stable mode;
� The level of cosmic rays was not largely disturbed at

least several days before the onset of FD, so that the
pre-event level can be clearly defined;
� The level of cosmic rays was not largely disturbed after

the event so that the level to which the intensity has
recovered can be estimated.

For each event studied here we found the recovery time
as follows. First, we have defined the pre-event level using a
quiet period before the disturbance onset. The pre-event
base interval, whose exact duration is given in subsequent

subsections, was taken the same for all the analyzed detec-
tors. Next, a clear recovery period has been identified
(removing, e.g., GLE or local ‘‘ejecta’’ effects – see Wibber-
enz et al. (1998)), and finally the recovery time has been
defined by fitting the actually observed time profile of
intensity with the exponential model (Eq. (1)), individually
for each detector but for the same time interval (see subse-
quent subsections).

The recovery time is plotted, together with 1runcertain-
ties, in Fig. 3 versus the median energy of detectors (Table
1) for the three events studied here and will be discussed in
the forthcoming Section.

3.1. November 2004

This event (Fig. 4) is interesting to study since the CR
intensity was undisturbed during the entire October 2004
so that the pre-event level can be identified. The two-step
FD started 08 Nov with the second step occurring on 10
Nov. The decrease was caused by a double transient inter-
planetary perturbation, initiated by two strong increases of
IMF on 08 and 10 Nov, the solar wind speed did not
exceed 800 km/s (see low panel). It took about a week to
recover to the pre-event level.
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Fig. 2. (a) Yield function of the two ground-level detectors: MUG and a sea-level NM. (b) Differential response function of the two detectors for the
medium solar activity.
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Fig. 3. Energy dependence of the recovery time for the three Forbush decreases studied here. Dots depict the recovery time, together with 1r error bars,
for different cosmic ray instruments with different median energy (see text), while the dotted line corresponds to the best-fit exponential law.
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The pre-increase basis interval was chosen as 07 Oct–07
Nov 2004. The recovery time was calculated for all detec-
tors listed in Table 1 for the period 11–19 Nov 2004, as
shown in the left-hand panel of Fig. 3. Two facts make this
event of particular interest. First, the recovery time had
strong dependence on the median energy, varying from
5.6 days for the Oulu NM (see Fig. 1) to 1.5 days for
MUG. This is contrary to the expectations discussed
above. Second, while the count rates of all NMs, including
the tropical Haleakala station, recovered to the pre-event
level, the MUG detector recorded the CR level exceeding
the pre-event level by 1–2% during a fortnight, indicating
an ‘‘over-recovering’’ of the CR flux after this FD. There
was a gap in the MUG data during 15–16 Nov. caused
by failure of the measuring computer, but we may securely
say (using log-files and inter-calibration) that no off-set
occurred during the gap. Variations of MUG data were
nearly identical to the Haleakala count rate from 30 Nov
until about 18 Dec. A recurrent suppression of CR level
occurred with a 27-day delay with respect to the main
event, and an over-recovering was again observed in
MUG data, but for a shorter period – 3 days. A possible
scenario for such an unusual behavior is discussed in
Section 4.

3.2. January 2005

Another case study is related to the famous event of Jan-
uary 2005. The time profile of CR intensities is shown in
Fig. 5 for different ground-based detectors. Although the
CR level was varying in December 2004, and a minor CR
suppression occurred in the beginning of January 2005,
the period from 11 Jan till 17 Jan was quiet enough to
establish the pre-event level. A major FD, caused by an
transient interplanetary perturbation initiated by an inter-
planetary shock, started on 18 Jan. It was followed by a

Ground Level Enhancement (GLE) on 20 Jan 2005, that
was one of the strongest GLEs ever observed.

The pre-increase basis interval was chosen as 11 Jan–17
Jan 2005. The recovery time was calculated for all the
detectors listed in Table 1, except for ESO NM (snow on
the roof), for the period 19–23 Jan 2005, as shown in the
middle panel of Fig. 3. The period with GLE (20 Jan
2005) has been removed from the fitting procedure. The
recovery after this event was faster than for Nov 2004,
but also shows a strong energy-dependence: s took values
from 1.2-day for MUG to about 3 days for mid- and
high-latitude NMs. A small over-recovery (about 1%) of
the MUG count rate was observed for a few days, but it
was comparable to the magnitude of diurnal variations.
There is also a hint at a small over-recovery in the Halea-
kala data, but it is not significant.

3.3. September 2005

The Forbush decrease of September 2005 (Fig. 6) was
caused by an transient interplanetary perturbation initiated
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Fig. 6. Forbush decrease of September 2005. Notations are the same as in
Fig. 4.
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by an interplanetary shock passing the Earth on 10–11 Sep-
tember 2005. The depth of FD was different for different
detectors – from 4% for MUG to 13% for the Oulu NM.
The pre-increase basis interval was chosen as 02–10 Sep
2005. The recovery time was calculated for all detectors
listed in Table 1 for the period 13–25 Sep 2005, as shown
in the right-hand panel of Fig. 3. The recovery time for this
events was almost constant for all the detectors, being
about 5 days, in agreement with the theoretical expecta-
tions and earlier analyzes (e.g., Lockwood et al., 1986).
Thus, this event is considered as a typical FD, whose recov-
ery time does not depend on the characteristics energy of a
detector.

4. Discussion and speculations

We have studied three FDs and found that one of them
was a typical event (September 2005), while two other were
quite unusual (November 2004 and January 2005). In par-
ticular, the recovery time of the latter two events appeared
dependent on the median energy of CR detector, contrary
to the expectations (Lockwood et al., 1986; Mulder and
Moraal, 1986). Another interesting feature of the unusual

events was an over-recovery of most energetic cosmic rays
after the event. Here, we suggest a qualitative speculative
scenario to understand such a non-trivial behavior.

A typical temporal scale of FD is about a week. This
corresponds not only to the radial propagation of the dis-
turbed region (interplanetary shock) to the distance of
about 2 AU but also to the azimuthal displacement of
Earth, due to the Sun’s rotation, by about 90� with respect
to the shock. This displacement may be comparable with
the angular extend of the shock. Accordingly, the time pro-
file of the FD recovery phase may be defined preferably not
by the radial extension of the shock but rather by the azi-
muthal gradients of CR particles around the disturbed
region. A schematic cartoon of the relative sun–earth-
shock geometry is shown in Fig. 7 for the event of Novem-
ber 2004. The period before the FD was quiet since there
were no disturbances in CR flux during the entire October
2004. Moreover, since the CR intensity remained at the
high level after the FD recovery (period between marks 2
and 3 in Fig. 7), one can conclude that the large-scale dis-
turbance, which caused this FD, was sole during the period
under investigation. In about 27 days after the main FD,
Earth again entered the same azimuthal region and a
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typical ‘‘recurrent decrease’’, usually associated with coro-
tating high speed solar wind streams (Lockwood, 1971),
was observed (mark 3 in Fig. 7). This suggests that this
region was characterized by rarefaction of CR particles
for at least one solar rotation period.

Enhanced intensity of high-energy CR (observed as
over-recovery of the muon detector count rate) can be
understood under the following assumption (see incut 2
in Fig. 7). High energy CR particles can experience an
azimuthal drift in the foreshock region so that they can
reach less disturbed (or undisturbed) magnetic lines and
propagate along them. This results in a ‘‘focusing’’ or con-
centration of energetic CR from large area into a relatively
small area next to the disturbed region. A hint for the over-
recovery in muon data can be observed also after the recur-
rent decrease. We note that this azimuthal drift can be less
effective for lower energy CR with smaller Larmor radius.

The above scenario does not pretend to offer a physical
explanation of the observed phenomenon but rather a sys-
tematic empirical description. In order to understand the
process in its full extend one needs to reconstruct the
parameters of the disturbed region (shock, magnetic cloud,
etc.) and perform a detailed modeling of particles’ trans-
port in its vicinity in a realistic 3D geometry. This is left
to forthcoming studies.

5. Conclusions

We have studied three Forbush decreases in 2004–2005
by means of analyzing cosmic ray data from ground-based
detectors – neutron monitors with different cutoff rigidities
as well as a muon detector. Our analysis reveals two unu-
sual features with the recovery of cosmic ray intensity,
which were not expected from the standard theory and
earlier studies.

(1) The recovery time in some events was found to be
strongly dependent on the median energy of the
detector – more energetic cosmic rays recover faster.

(2) An over-recovery (recovery of the cosmic-ray inten-
sity to the level exceeding the pre-event level) is
observed in the most energetic cosmic ray data (muon
detector).

We suggest a simple scenario which might be responsible
for the observed phenomenon. A more detailed study,
including detailed reconstruction of the relative 3D geom-
etry and full modeling of the particle transport, is needed
for these events.
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