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Abstract. Cosmic ray induced ionization (CRII) is an im-
portant factor of outer space influences on atmospheric prop-
erties. Variations of CRII are caused by two different pro-
cesses – solar activity variations, which modulate the cos-
mic ray flux in interplanetary space, and changes of the geo-
magnetic field, which affects the cosmic ray access to Earth.
Migration of the geomagnetic dipole axis may greatly alter
CRII in some regions on a time scale of centuries and longer.
Here we present a study of CRII regional effects of the ge-
omagnetic field changes during the last millennium for two
regions: Europe and the Far East. We show that regional
effects of the migration of the geomagnetic dipole axis may
overcome global changes due to solar activity variations.

1 Introduction

Presently, there are numerous arguments suggesting that so-
lar magnetic variability affects the global climate in different
aspects and on different time scales (see, e.g.,de Jager, 2005;
Haigh, Lockwood and Giampapa, 2005; Versteegh, 2005).
An important factor affecting the terrestrial environment is
the flux of cosmic rays permanently impinging on the Earth.
In particular, galactic cosmic rays (CR) form the dominant
source of ionization in the atmosphere, especially the tropo-
sphere. Variations of the cosmic ray flux lead to significant
changes in the cosmic ray induced ionization (CRII), which
in turn may modulate processes related to the formation of
clouds (e.g.Ney, 1959; Svensmark, 2000; Carslaw et al.,
2002). There is much evidence for a significant correlation
between the cosmic ray flux and low cloud cover on a global
scale during the last 20 years (e.g.,Marsh and Svensmark,
2000; Palĺe Bago and Butler, 2000). On the other hand, the
relation between CRII and cloud coverage is not uniform and
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has a clear geographical pattern – strong correlations are lim-
ited to several large areas (e.g., the Northern Atlantic and Eu-
rope, the Far East, and the circum-Antarctic region), where
cloud formation conditions may be more sensitive to CRII
variations (Palĺe et al., 2004; Usoskin et al., 2004a). There-
fore, changes of CRII in these regions can produce a larger
effect on the cloud cover and thus on the climate than global
CRII variations.

The cosmic ray flux, and the ensuing CRII, are modulated
by several processes. The most obvious is solar modulation
which leads to the well-known 11-year cycle in CR inten-
sity but also causes long-term variations (e.g.,Usoskin et al.,
2003; Solanki et al., 2004). On the other hand, local CRII
is defined by the flux of CR which can access a given loca-
tion on the Earth. Variations of the local CR flux are caused
not only by the overall modulation of CR by solar activity
but also by changes of the local geomagnetic rigidity cutoff
(the minimum rigidity of CR needed to access the location).
The latter is defined by both the global dipole moment of
the geomagnetic field and by the geomagnetic latitude of the
site (details are discussed in Sect.2), which vary with time
because of the magnetic axis migration (Kudela and Bobik,
2004; Shea and Smart, 2004a,b).

Most of the earlier studies consider possible climatic ef-
fects of either solar activity or cosmic ray flux at the Earth’s
orbit (e.g.,Shaviv, 2005; Usoskin et al., 2005a). However,
the local variations of CRII in some locations may be domi-
nated on long time scales, centennial and longer, not by these
global processes but by geomagnetic field changes. In this
paper we consider such CRII variations in two regions in the
Northern Hemisphere with the highest correlation between
cloud formation and CRII – Europe and the Far East – and
estimate the role of geomagnetic field variations on atmo-
spheric ionization for the last millennium.
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Fig. 1. Cosmic ray induced ionization of the atmosphere at an alti-
tude of 3 km (depth 700 g/cm−2) as a function of the geomagnetic
cutoff rigidity Pc and modulation potentialφ.

2 Cosmic Ray Induced Ionization

The ionization rate in the atmosphere can be represented in
the following form:

Q(x, φ, Pc) =

∑
i

∫
∞

Tc,i

Ji(T , φ) Yi(x, T ) dT , (1)

where the summation is performed over differentith species
of CR (protons,α−particles, heavier species),Yi(x, T ) is
the ionization yield function (the number of ion pairs pro-
duced at altitudex in the atmosphere by one CR particle of
theith type with kinetic energyT – seeUsoskin et al.(2004b,
2006a)), Ji(T , φ) is the differential energy spectrum of thei-
th species of GCR that is defined by the modulation potential
φ which depends on the solar activity level (seeCaballero-
Lopez and Moraal, 2004; Usoskin et al., 2005b). Integration
is over the kinetic energyT aboveTc,i , which is kinetic en-
ergy corresponding to the local geomagnetic rigidity cutoff
Pc. The value ofPc can be approximately computed using
Störmer’s approximation (Elsasser et al., 1956):

Pc ≈ 1.9 × M cos4 λG, (2)

wherePc is the vertical geomagnetic cutoff in GV,M is the
dipole moment of the geomagnetic field expressed in 1025

Gauss cm3, andλG is the local geomagnetic latitude.λG can
be calculated from local geographical coordinates (λ; φ) and
the coordinates of the magnetic pole (λP; φP)

sinλG = sinλP × sinλ + cosλP × cosλ × cos(φP − φ)(3)

Thus one can see from Eq.1 that the local CRII depends on
both the level of solar activity (quantified via the modulation
potentialφ) and on local parameters of the geomagnetic field
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Fig. 2. Changes during the last millennium: (a) Migration of the ge-
omagnetic pole; (b) Dipole moment; (c) Geomagnetic cutoff rigid-
ity in Europe (geographical 50◦ N 0◦ E) and Far East (geographical
45◦ N 140◦ E); (d) Modulation potential (decadal averages). Let-
ters denote the Medieval maximum (MM) as well as the Wolf (W),
Sp̈orer (S), Maunder (M) and Dalton (D) minima of solar activity.

(quantified via the geomagnetic rigidity cutoffPc). The de-
pendence of CRII (computed by the method ofUsoskin et al.
(2006a)) on the values ofPc andφ is shown in Fig.1 for an
altitude of about 3 km (atmospheric depth 700 g/cm2). The
range shown in the figure covers a range of realistic values of
φ (from the Maunder minimum up to very high solar activity
with φ∼1500 MV) andPc (from poles up to equatorial cutoff
of 15 GV).
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3 Geomagnetic field and solar activity changes during
the last millennium

The geomagnetic field changes in time, due to the varying
dipole momentM and to geomagnetic pole migration. The
latter leads to a varying geomagnetic latitudeλG for a given
geographical location. The dipole moment was gradually de-
creasing during the last millennium (see Fig.2b) by nearly
1/3 of its value. Here we use data of the geomagnetic re-
constructions byBloxham and Jackson(1992) andHongre
et al. (1998) before 1900 and the IGRG/DGRF model after
1900. Changes of the dipole axis were quite rapid during the
last millennium (see Fig.2a), so that the northern (magnet-
ically southern) pole migrated from the Severnaya Zemlya
archipelago circa 1000 AD to Northern Greenland nowadays,
i.e., by around 180◦ in geographical longitude.

Both M and λG define the local geomagnetic cutoff
(Eq.2). The pole migration may greatly modify the value of
Pc in some locations, particularly in mid-latitudes, leading to
significant variations ofPc and thus CRII in these regions.

Solar activity was also changing greatly during the last
millennium affecting the variability of the cosmic ray flux,
and thus CRII. Fig.2d shows time profile of the heliospheric
modulationφ (Solanki et al., 2004) reconstructed from data
on the cosmogenic isotope14C measured in tree rings. Note
that 14C is globally mixed in the atmosphere before depo-
sition in a natural archive and therefore is affected by the
dipole moment (which has been taken into account by the
reconstruction ofφ) but is insensitive to the dipole axis mi-
gration. It is notable that the solar activity was significantly
lower in the past than during the last few decades (Usoskin
et al., 2003; Solanki et al., 2004), which implies that global
CRII would have been higher in the past.

4 Effects in CRII

In order to study the effects of geomagnetic-field changes,
we consider in detail two regions: the European region (in-
cluding the East-North Atlantic affected by the Gulf stream)
with its centre at geographical 50◦ N 0◦ E and the Far East
region with its centre at 45◦ N 140◦ E. We note that these re-
gions correspond to areas where the CRII may strongly affect
low cloud formation (Usoskin et al., 2006b; Voiculescu et
al., 2006). Therefore, variations of the CRII in these regions
may be relevant for climate changes. Long-term changes of
the geomagnetic cutoff in these regions are shown in Fig.2c.
One can see that these changes are quite dramatic, by more
than a factor of two:Pc changed between 1.9 and 4.7 GV
in Europe and between 3.2 and 7.2 GV in the Far East. The
corresponding changes in the geomagnetic latitude were be-
tween 45◦ and 55◦ and 35◦ and 50◦, respectively, butPc
changes include also changes ofM.

Using the computed changes in the local geomagnetic
rigidity cutoff Pc (see Fig.2c) and the reconstructed solar
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Fig. 3. Decadal averaged cosmic ray induced ionization (solid
curves) at 3 km altitude (700 g/cm−2 depth) in Europe (geographi-
cal 50◦ N 0◦ E) and the Far East (geographical 45◦ N 140◦ E). Dot-
ted curves correspond to hypothetical variations if there were no
changes in the geomagnetic field, i.e. changes are attributed to only
solar activity variations. All curves were normalized to the period
1990–2000 (4.82 and 4.13 ion pairs cm−3 s−1 atm−1 for Europe
and the Far East, respectively), which is depicted by the dashed
line.

modulation of galactic CR (Fig.2d), and applying the CRII
model (Fig.1), we have calculated the expected changes in
CRII in the two selected regions, which are shown as solid
curves in Fig.3. These changes include both solar activity
and geomagnetic field changes. In order to disentangle so-
lar and geomagnetic field changes in the CRII variations, we
have also computed CRII changes caused only by solar ac-
tivity changes (dotted line in Fig.3), i.e., assuming that the
geomagnetic field did not change but remained the same as
now.

In the European region, the absolute maximum of the CRII
occurred during the Maunder minimum with the ionization
rate being 20% higher than nowadays (Fig.3a). During the
Medieval maximum (ca. 1200 AD) the CRII level was very
similar to the modern level. This pattern resembles global
climatic reconstructions: Medieval warming followed by the
Little Ice age and then the Modern warming (see, e.g.,Eddy,
1977). Here we note that it still a matter of intense debate
whether these pronounced climatic features were regional
(related to European regions) or global. On the other hand,
these CRII variations were largely affected by geomagnetic
changes, e.g., the CRII would have been 10% higher 800
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years ago than now if there were no changes in the geomag-
netic field. This implies that the long-term changes in CRII
in Europe were mostly defined by the migrating geomagnetic
pole before 1500 AD rather than by solar activity variations.

The situation is quite different in the Far East. The changes
of CRII would be small, within 10%, if the geomagnetic field
was the same as now (Fig.3b). However, the full span of
CRII changes is estimated to be as large as 30% between ca.
1300 and the modern epoch. Moreover, the CRII rate was
25% higher during the Medieval maximum than now, due to
changes in the geomagnetic rigidity cutoff (see Fig.2c). This
is contrary to the pattern for the European region.

From this study we can conclude that local CRII variations
may be largely affected by geomagnetic field changes, and
not only by the global modulation of the CR flux by solar
activity.

5 Conclusions

The Earth’s climate is not formed/modulated uniformly over
the globe, but is mostly determined by conditions in some
specific key regions, which in turn affect larger regions or
global climate features. Thus, the global climate can be af-
fected via changes of not only global atmospheric or ocean
parameters, but also via local changes if they are related to
such key regions. Here we have considered an important at-
mospheric parameter, the cosmic ray induced ionization, in
two regions in the Northern Hemisphere – the European re-
gion and the Far East region – during the last millennium.
We have shown that CRII variations in these two regions are
dominated by changes caused by the migration of the geo-
magnetic pole, which exceed those variations due to solar
activity changes.

We note that the migration of the magnetic pole during the
last millennium, which caused significant effects in cosmic
ray induced ionization variations in some regions, was not
exceptional. Actually, it can be regarded as a minor excur-
sion (about 2000 km or 18◦ of a great circle during the mil-
lennium). There is evidence for more dramatic excursions of
the geomagnetic axis, even for historical times. For example,
the magnetic pole could have migrated for more that 90◦ of a
great circle during the so-called “Sterno-Etrussia” geomag-
netic excursion around 700 BC (Dergachev et al., 2004). The
corresponding changes in local CRII must then be dramatic
and may result in strong regional effects.

It is important to realize that temporal variations of the in-
solation at any location on Earth are defined by the variabil-
ity of the solar irradiance and thus are synchronous all over
the globe. On the other hand, regional changes in CRII can
be affected not only by the varying flux of galactic cosmic
rays but also by geomagnetic field changes, that may exhibit
very particular regional features. Accordingly, studies of re-
gional effects may shed new light on debates concerning a
particular mechanism responsible for the solar variability–

climate link – cosmic rays or solar radiance (Haigh, 1996;
Tinsley, 1996; Yu, 2002; Kristjansson et al., 2004; Carslaw
et al., 2002; Haigh, Lockwood and Giampapa, 2005).

We conclude that local effects in variations of the cosmic
ray flux, which may dominate over the globally averaged
changes in some locations, should be taken into account in
long-term studies of solar-terrestrial relations.
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